P.R.GOVT.COLLEGE (AUTONOMOUS), KAKINADA II B.SC. – MATHEMATICS / SEMESTER- III (W.E.F. 2017-2018) Course: ABSTRACT ALGEBRA

Total Hrs. of Teaching: 90 @ 6 h / Week

Objective:

- To learn about the basic structure in Algebra
- To understand the concepts and able to write the proofs to theorems
- To know about the applications of group theory in real world problems

Unit 1: Groups

Binary Operation – Algebraic structure – semi group – monoid –Definition and elementary properties of a Group – Finite and Infinite groups – Examples – Order of a group – Composition tables with examples.

Unit 2: Subgroups, Cosets and Lagrange's Theorem

Definition of Complex – Multiplication of two complexes – Inverse of a complex – Subgroup definition – examples - criterion for a complex to be a subgroup –criterion for the product of two subgroups to be a subgroup – union and intersection of subgroups.

Cosets definition – properties of cosets – Index of subgroup of a finite group – Lagrange's Theorem.

Unit 3: Normal Subgroups

Definition of normal subgroup – proper and improper normal subgroup – Hamilton group – criterion for a subgroup to be a normal subgroup - intersection of two normal subgroups subgroup of index 2 is a normal subgroup – simple group – quotient group – criteria for the existence of a quotient group.

Unit 4: Homomorphism

Definition of homomorphism - Image of homomorphism - elementary properties of homomorphism - Definition and elementary properties of Isomorphism and automorphism -Kernel of a homomorphism – Fundamental theorem on homomorphism and applications.

Unit 5: Permutations and Cyclic groups

Definition of permutation – permutation multiplication – Inverse of a permutation – Cyclic permutations – transposition – even and odd permutations – Cayley's theorem.

Definition of cyclic group - elementary properties – classification of cyclic groups. Additional Inputs : Applications of group theory

Text Book:

Abstract Algebra by J.B.Fraleigh

(17 hours)

(17 hours)

(16 hours)

(20 hours)

(20hours)

Total Credits: 05 _____

Books for reference:

- 1 A text book of Mathematics, S.Chand and Co.
- 2. Modern Algebra by Gupta and Malik
- 3 Elements of Real Analysis by Santhi Nararayana & M.D.Raisinghania.

Unit	ΤΟΡΙϹ	V.S.A.Q	S.A.Q	E.Q	Marks allotted to the Unit	
1	Groups	1	1	2	22	
2	Subgroups, Cosets & Lagrange's theorem	1	1	2	22	
3	Normal Subgroups	1	1	1	14	
4	Homomorphism	1	1	1	14	
5	Permutations and Cyclic groups	1	1	2	22	
		5	5	8	94	

BLUE PRINT FOR QUESTION PAPER PATTERN SEMESTER-III

V.S.A.Q = Very short answer questions (1 mark)

S.A.Q = Short answer questions (5 marks)

E.Q = Essay questions (8 marks)

Very short answer questions	: 5 X 1 =05
Short answer questions	: 3 X 5 =15
Essay questions	: 5 X 8 =40
Total Marks	= 60

P.R.GOVERNMENT COLLEGE (AUTONOMOUS), KAKINADA II YEAR B.SC., DEGREE EXAMINATIONS III SEMESTER Mathematics : Abstract Algebra Paper–III : (Model Paper w.e.f. 2018 - 2019)

Time: 2 1/2 hours

Max. Marks: 60M

5x1M = 5 M

5x5M = 25 M

<u>Part–I</u>

Answer the following questions. Each question carries 1 mark.

- 1. Write the Cauchy's composition table for $G = \{1, \omega, \omega^2\}$.
- 2. Write a proper subgroup of a group $G = \{1, -1, i, -i\}$ with respect to multiplication.
- 3. Define normal subgroup.
- 4. Check whether $f:(Z, +) \rightarrow (Z, +)$ defined by $f(x) = x^2$ is a homomorphism or not.
- 5. Write the inverse of the permutation $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$.

<u>Part-II</u>

Answer any Three questions. Each question carries FIVE marks.

- 6. Prove that the set Z of all integers form an abelian group w.r.t. the operation defined by $a * b = a + b + 2 \forall a, b \in Z$.
- 7. Prove that a non empty complex H of a group G is a subgroup of G if and only if $H = H^{-1}$.
- 8. If M, N are two normal subgroups of G such that $M \cap N = \{e\}$ then every element of M commutes with every element of N.
- 9. If *f* is a homomorphism of a group *G* into a group *G'*, then prove that the kernel of *f* is a normal subgroup of *G*.
- 10. Express the product $(2 \ 5 \ 4)(1 \ 4 \ 3)(2 \ 1)$ as a product of disjoint cycles and find its inverse.

<u>Part-III</u>

Answer any FIVE questions by choosing atleast two from each section. 5X8M=40 M

Section-A

- 11. Show that the nth roots of unity form an abelian group with respect to multiplication.
- 12. Prove that a semi group (G, .) is a group if and only if the equations
 - ax = b, $ya = b \forall a, b \in G$ have unique solutions in G.
- 13. State and Prove the necessary and sufficient condition for a finite complex H of a group G to be a subgroup of G.

14. Prove that the union of two subgroups of a group is a subgroup if and only if one is contained in the other.

Section-B

- 15. If H is a normal subgroup of a group (G, .) then prove that the product of two right (left) cosets of H is also a right (left) coset of H.
- 16. Prove that every homomorphic image of a group G is isomorphic to some quotient group of G.
- 17. Prove that the product of two disjoint cycles defined on set commute.
- 18. Prove that every subgroup of a cyclic group is cyclic.
