## I B.SC. - MATHEMATICS / SEMESTER - II (W.E.F. 2017-2018) Course: SOLID GEOMETRY

Total Hrs. of Teaching: 90 @ $6 \mathrm{~h} /$ Week
Total Credits : 05

## Objective:

- To get awareness about the three dimensional geometry along with visualization.
- To be able to apply 3-d geometry for the construction.

Module - 1

Unit 1: The Plane
(18 h)
Equation of plane in terms of its intercepts on the axes, Equation of the plane through the given points, Length of the perpendicular from a given point to a given plane, Bisectors of angles between two planes, Combined equation of two planes, Orthogonal projection on a plane.

## Unit 2: The Straight Line

Equation of a line, Angle between a line and a plane, the condition that a given line may lie in a given plane, the condition that the given lines are coplanar, Number of arbitrary constants in the equations of straight line, sets of conditions which determine a line, The shortest distance between two lines, the length and equations of the line of shortest distance between two straight lines, length of the perpendicular from a given point to a given line.

## Module -2

## Unit 3:The Sphere

Equation of the sphere, Plane section of a sphere, Intersection of two spheres, Equation of a circle, Sphere through a given circle, Intersection of a sphere and a line, Tangent lines and tangent planes, plane of contact, Polar plane conjugate points, conjugate planes.

## Unit 4: The Sphere and the Cone

Angle of intersection of two spheres; condition for two spheres to be orthogonal; Radical plane, Coaxial system of spheres, simplified form of the equation of two spheres.

Definition of a cone, vertex, guiding curve generators, Equation of the cone with a given vertex and guiding curve, Equation of cone with vertex at origin is homogeneous, Condition that the general equation of the second degree should represent a cone.

## Unit 5: The Cone

Enveloping cone of a sphere, Right Circular Cone, Conditions that a cone may have three mutually perpendicular generators, Intersection of a line and quadric cone, Tangent lines and tangent plane at a point, Condition that a plane may touch a cone, Reciprocal cones, Intersection of two cones with a common vertex.

## Additional Inputs:

1. Intersection of three planes; Triangular prism.
2. The right circular cylinder.

## Prescribed Book:

Scope as in "A text book of Mathematics for B.Sc. volume I" by V. Krishna Murthy \& others, S.Chand and Co. Ltd.

## ReferenceBooks:

1. Analytical Solid Geometry by Shanti Narayan and P. K. Mittal, published by S. Chand \& Company Ltd. Seventh edition.
2. A text book of Analytical Geometry of Three Dimensions by P. K. Jain and Khaleel Ahmed, Wiley Eastern Ltd., 1999.
3. Course on Solid Geometry by N. P. Bali-Golden series publications.

## BLUE PRINT FOR QUESTION PAPER PATTERN <br> SEMESTER-II

| Unit | TOPIC | V.S.A.Q | S.A.Q | E.Q | Marks allotted <br> to the Unit |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | The Plane | 1 | 1 | 2 | 22 |
| $\mathbf{2}$ | The Right Line | 1 | 1 | 2 | 22 |
| $\mathbf{3}$ | The Sphere | 1 | 1 | 1 | 14 |
| $\mathbf{4}$ | The Sphere <br> \& The Cone | 1 | 1 | 2 | 22 |
| $\mathbf{5}$ | The Cone | 1 | 1 | 1 | 14 |
|  | TOTAL | 5 | 5 | 8 | 94 |

V.S.A. $\mathbf{Q}=$ Very short answer questions (1 mark)
S.A.Q = Short answer questions ( 5 marks)
E.Q = Essay questions (8 marks)

Very short answer questions: 5 X $1=05$
Short answer questions : $3 \mathrm{X} 5=15$
Essay questions $: 5 \times 8=40$

Total Marks $\quad=60$

# P. R. GOVERNMENT COLLEGE (AUTONOMOUS), KAKINADA <br> I YEAR B.SC., DEGREE EXAMINATIONS II SEMESTER <br> Mathematics Paper-I B: Solid Geometry <br> (Model Paper w.e.f. 2017-2018) 

Time: 2 Hrs 30 min
Max. Marks:60

## PART-I

Answer ALL the questions.
$5 \mathrm{X} 1 \mathrm{M}=5 \mathrm{M}$

1. Find the equation of the plane through the line of intersection of $x-3 y+2 z+3=0,3 x-y-2 z-5=0$ and the origin.
2. Find the equation of the line passing through $(4,3,-7)$ and equally inclined to the axes.
3. Find the centre of the sphere $x^{2}+y^{2}+z^{2}-3 x+5 y-4 z-3=0$.
4. Find the polar plane of the point $(0,-1,1)$ with respect to the sphere

$$
x^{2}+y^{2}+z^{2}-2 x+4 y+6 z-11=0
$$

5. Write the reciprocal cone of $9 x^{2}+4 y^{2}-7 z^{2}=0$.

## PART -II

Answer any THREE questions, each question carries FIVE marks.
$3 \times 5 \mathrm{M}=15 \mathrm{M}$
6. Find the equation of the plane through the point $(-1,3,2)$ and perpendicular to the two planes $x+2 y+2 z=5$ and $3 x+3 y+2 z=8$.
7. Find the image of the point $A(1,3,4)$ in the plane $2 x-y+z+3=0$.
8. Find the equation of the sphere through the origin and making intercepts $a, b, c$ with the axes.
9. If $r_{1}$ and $r_{2}$ are the radii of the orthogonal spheres, then find the radius of the circle of their intersection.
10. Find the equation of the enveloping cone of the sphere $x^{2}+y^{2}+z^{2}+2 x-2 y=2$, with its vertex at $(1,1,1)$.

## PART-III

Answer any FIVE questions by choosing at least TWO from each section.

## SECTION -A

11. Find the planes bisecting the angles between the angles between the planes $2 x-y+2 z+3=0$ and $3 x-2 y+6 z+8=0$. Point out which of the planes bisects the acute angle and which bisects the obtuse angle in which the origin lies.
12. Show that the equation $x^{2}+4 y^{2}+9 z^{2}-12 y z-6 z x+4 x y+5 x+10 y-15 z+6=0$ represents a pair of parallel planes and find the distance between them.
13. Prove that the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} ; \frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ are coplanar. Also find their point of intersection and the plane containing the lines.
14. Find the length and equations of shortest distance between the lines

$$
\frac{x-2}{2}=\frac{y-2}{3}=\frac{z-3}{4} \text { and } \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}
$$

## SECTION -B

15. Show that the four points $(-8,5,2),(-5,2,2),(-7,6,6),(-4,3,6)$ are concyclic.
16. Find the equation of the sphere which touches the plane $3 x+2 y-z+2=0$ at $(1,-2,1)$ and cuts orthogonally the sphere $x^{2}+y^{2}+z^{2}-4 x+6 y+4=0$.
17. Prove that the plane $a x+b y+c z=0$ cuts the cone $y z+z x+x y=0$ in a perpendicular lines if $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$.
18. Find the equation to the right circles cone whose vertex in $P(2,-3,5)$ axis $P Q$ which makes equal angles with the axis and which passes through ( $1,-2,3$ ).
