P.R. GOVT. COLLEGE (AUTONOMOUS), KAKINADA
 I B.Sc. MATHEMATICS/Semester I (w.e.f 2017-2018)
 Course: Differential equations

Total Hrs. of Teaching-Learning: 90 @ 6 hr/Week
Total credits: 05

OBJECTIVES: Module- I, II

- To classify differential equations by order, linearity and homogeneity.
- Use analytic techniques to compute solutions to various differential equations.
- To identify the appropriate method for solving the given differential equation.
- To get awareness about the applications.

Module I

Unit 1: Differential equations of first order and first degree
(18 hours)
Exact differential equations, integrating factors, linear Differential equations, Differential equations reducible to linear form, Change of variables.

Unit 2: Orthogonal Trajectories, Differential equations of the first order but not of the first degree

Orthogonal Trajectories, Equations solvable for p, Equations solvable for y, Equations solvable for x , Equations that do not contain x (or y), Clairaut's equation.

Module II

Unit 3: Higher Order Linear Differential Equations (with constant coefficients) -- I
(18 hours)
Solution of homogeneous linear differential equations of order n with constant coefficients. Solution of the non-homogeneous linear differential equations with constant coefficients $f(D) y=Q(x)$ by means of polynomial operators when $Q(x)=b e^{a x}, Q(x)=b \sin a x$ or $b \cos a x$.

Unit 4: Higher Order linear differential equations (with constant coefficients) ---- II
(18 hours)
Solution of the non-homogeneous linear differential equations with constant coefficients $f(D) y=Q(x)$ by means of polynomial operators when $Q(x)=b x^{k}, Q(x)=e^{a x} V, Q(x)=x V$ and $Q(x)=x^{m} V$.

Unit 5: Higher Order linear differential equations: (withNon constant coefficients)
(18 hours)
Method of variation of parameters, Linear differential equations with non-constant coefficients, The Cauchy-Euler equation.

Additional Inputs:

1. Simultaneous differential equations
2. Applications of $1^{\text {st }}$ order and $1^{\text {st }}$ degree differential equations.
(No question to be set from this part)

Prescribed Text Books:

1. Scope as in "Differential Equations and their applications by ZafarAhsan, published by prentice-Hall of India Pvt. Ltd. New Delhi-Second edition.

Reference Books:

1. A text book of Mathematics-Volume-I published by S.Chand\& Company.
2. Differential Equations bySanthiNarayana, S.Chand\& Company.

BLUE PRINT FOR QUESTION PAPER PATTERN SEMESTER-I

Unit	TOPIC	V.S.A.Q	S.A.Q	E.Q	Marks allotted
$\mathbf{1}$	Differential Equations of 1 ${ }^{\text {st }}$ order and 1 st degree	1	1	2	22
$\mathbf{2}$	Differential Equations of 1 ${ }^{\text {st }}$ order but not of 1				
$\mathbf{3}$	1	1	2	22	
$\mathbf{4}$	Higher Order Linear Differential Equations (with constant coefficients) - I	1	1	1	14
$\mathbf{5}$	Higher Order Linear Differential Equations (with constant coefficients) - II	1	1	2	22
Higher Order Linear Differential Equations (with non constant coefficients)	1	1	1	14	

V.S.A.Q = Very short answer questions (1 mark)
S.A.Q = Short answer questions (5 marks)
E.Q = Essay questions (8 marks)

Very short answer questions : 5 X $1=05$
Short answer questions $: 3 \times 5=15$
Essay questions $: 5 \times 8=40$

Total Marks $\quad=60$

P.R. Government College (Autonomous), Kakinada
 I year B.Sc., Degree Examinations - I Semester
 Mathematics Course: Differential Equations
 Paper I (Model paper w.e.f.2017-2018)

Time: 2 1/2 Hrs
Max. Marks: 60

Part-I

Answer ALL the questions. Each question carries 1 mark.
$\mathbf{5 X 1 M}=\mathbf{5 M}$

1. Write the condition for a differential equation of first order to be an exact differential equation.
2. Solve $(p-x)\left(p-y^{2}\right)=0$.
3. Find y_{c} of the differential equation $\left(D^{2}+4 D+4\right) y=3 x e^{-2 x}$.
4. Find the particular integral of $D^{2} y=x^{2}$.
5. In a D.E. $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R$, if $1+P+Q=0$ then what is a part of complementary function.

Part-II

Answer any THREE questions, each question carries five marks.
3X5M=15M
6. Solve $\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0$.
7. Solve $(p y+x)(p x-y)=2 p$.
8. Solve $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+2 y=\sin 2 x$.
9. Solve $\left(D^{2}-2 D+1\right) y=x^{2} e^{3 x}$.
10. Solve $\left(D^{2}-2 D\right) y=e^{x} \sin x$, by the method of variation of parameters.

Part-III

Answer FIVE questions from the following by choosing at least TWO question from each section. Each question carries 8 marks.

5X8M=40M

SECTION-A

11. Solve $\left(y+\frac{y^{3}}{3}+\frac{x^{2}}{2}\right) d x+\frac{1}{4}\left(x+x y^{2}\right) d y=0$.
12. Solve $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$.
13. Solve $y^{2} \log y=x p y+p^{2}$.
14. Find the orthogonal trajectories of the family of curves $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$, where ' a ' is a parameter.

SECTION-B

15. Solve $\left(D^{2}-4 D+3\right) y=\sin 3 x \cdot \cos 2 x$
16. Solve $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+13 y=8 e^{3 x} \sin 2 x$.
17. Solve $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=x e^{x} \sin x$.
18. Solve $x^{2} y^{\prime \prime}-2 x(1+x) y^{\prime}+2(1+x) y=x^{3}$.
