Thermodynamics

(Module -4)
B.Sc. III Year

SAIIKRISHNA UGGU

Lecturer in Chemistry

P. R. Govt. College (A) KAKINADA

CONTENTS...

$>$ Variation of heat of a reaction with temperature
Kirchoffs equation

KIRCHHOFF'S EQUATION

Variation of Heat off a reaction or Enthalpy of formation with temperature is given by Kirchhoff's equation

KIRCHHOFF'S EQUATION

The amount of heat evolved or absorbed in a process, varies with temperature. The exact relationship showing the variation of the heat of reaction with temperature was given by Kirchhoff in 1858

KIRCHHOFF'S EQUATION

Statement: The change in the heat of a reaction at constant pressure for every degree change of temperature is equal to the change in the heat capacity at constant pressure.

KIRCHHOFF'S EQUATION

Mathematically it is expressed as follows,

$$
\frac{\Delta \mathrm{H} 2-\Delta \mathrm{H} 1}{T 2-T 1}=\Delta \mathrm{Cp}
$$

KIRCHHOFF'S EQUATION

It can be derived easily with the help of the first law of thermodynamics.

Consider the simple process,

$$
\mathrm{A}_{\text {(reactants) }}---------->\mathrm{B}_{\text {(products) }}
$$

KIRCHHOFF'S EQUATION

Now, suppose H_{A} \& H_{B} are the heat contents or enthalpies of the reactants and products respectively. Then the heat of reaction accompanying the process will be given by,

$$
\Delta \mathrm{H}=\mathrm{H}_{\mathrm{B}}-\mathrm{H}_{\mathrm{A}}
$$

KIRCHHOFF'S EQUATION

Differentiating the equation with respect to temperature at constant pressure, we get

$$
\left[\frac{\mathrm{d}(\Delta H)}{\mathrm{dT}}\right]=\left[\frac{\mathrm{dH}_{\mathrm{B}}}{\mathrm{dT}}\right]-\left[\frac{\mathrm{d}(\mathrm{HA})}{\mathrm{dT}}\right]
$$

KIRCHHOFF'S EQUATION

According to the definition of heat capacity at constant pressure,

$$
\begin{gathered}
\mathrm{C}_{\mathrm{p}}=\left[\frac{\mathrm{dH}}{d T}\right] \\
{\left[\frac{\mathrm{d}(\Delta H)}{\mathrm{dT}}\right]=\left(\mathrm{C}_{\mathrm{p}}\right) \mathrm{B}-\left(\mathrm{C}_{\mathrm{p}}\right) \mathrm{A}}
\end{gathered}
$$

KIRCHHOFF'S EQUATION

Where, $\left(\mathrm{C}_{\mathrm{p}}\right)_{\mathrm{B}},\left(\mathrm{C}_{\mathrm{p}}\right)_{\mathrm{A}}$ are the mean molar heat capacities of the products and reactants respectively at the given pressure.

Then,

$$
\begin{gathered}
\frac{\mathrm{d}(\Delta H)}{\mathrm{dT}}=\Delta \mathrm{C}_{\mathrm{p}} \\
\mathrm{~d}(\Delta \mathrm{H})=\Delta \mathrm{C}_{\mathrm{p}} \cdot \mathrm{dT}
\end{gathered}
$$

KIRCHHOFF'S EQUATION

This is only for a small temperature difference, dT. The equation for large temperature difference (say T_{1} and T_{2}) can be obtained by integrating the above equation between the limits.

$$
\begin{gathered}
\int_{H 1}^{H 2} d(\Delta \mathrm{H})=\int_{T 1}^{T 2} \Delta \mathrm{C}_{\mathrm{p}, \mathrm{dT}} \\
\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{1}=\Delta \mathrm{C}_{\mathrm{p}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)
\end{gathered}
$$

KIRCHHOFF'S EQUATION

Then, finally we get the famous Kirchoffs equation as,

$$
\frac{\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}=\Delta \mathrm{C}_{\mathrm{p}}
$$

The change in the heat of reaction at constant pressure for every degree change of temperature is equal to the change in the heat capacity at constant pressure.

THANK YOU......

Thank you for watching

