$>$ The equation of the sphere having $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ as the ends of the diameter is $\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)+\left(z-z_{1}\right)\left(z-z_{2}\right)=0$
$>$ If the plane $\mathrm{U}=0$ intersects the sphere $\mathrm{S}=0$, in a circle C , then for all real values of $\lambda, S+\lambda U=0$ represents the equation to a sphere passing through the circle C.
$>$ If $S=0, S^{\prime}=0$ are two distinct intersecting spheres, then $\lambda_{1} S+\lambda_{2} S^{\prime}=0$ represents a system of spheres passing through the circle of intersection of the spheres $S=0$, $S^{\prime}=0$.

Problems

1. Find the equations of the spheres passing through the circle $x^{2}+y^{2}=4, Z=0$ and is intersected by the plane $x+2 y+2 z=0$ in a circle of radius 3 .
Sol: The equation of the sphere is $x^{2}+y^{2}-4+\lambda Z=0$
Its centre is $\left(0,0,-\frac{\lambda}{2}\right)$ and the radius is $\sqrt{\frac{\lambda^{2}}{4}+4}$
Given plane is $x+2 y+2 z=0$
Since perpendicular distance from the centre to the plane = radius of the sphere
$\frac{\left|0+0+2 *-\frac{\lambda}{2}\right|}{\sqrt{1+4+4}}=\sqrt{\frac{\lambda^{2}}{4}+4}$
By simplifying we get $\lambda= \pm 6$
\therefore The equation of the sphere is $x^{2}+y^{2}-4 \pm 6 \mathrm{Z}=0$
2. Show that the two circles $x^{2}+y^{2}+z^{2}-y+2 z=0, x-y-z=2, x^{2}+y^{2}+z^{2}+$ $x-3 y+z-5=0,2 x-y+4 z-1=0$
Sol: The equation of the sphere is $x^{2}+y^{2}+z^{2}-y+2 z+\alpha(x-y-z-2)=0(1)$ The equation of the sphere is $x^{2}+y^{2}+z^{2}+x-3 y+z-5+\mu(2 x-y+4 z-1)=0$ (2)

Since both lie on the same sphere then

$$
\alpha=2 \mu+1, \alpha+1=3+\mu \text { and } \alpha+2=4 \mu+1
$$

By solving two of the equations we get $\alpha=3, \mu=1$ and the third eqation satisfied Therefore both circles lie on the same sphere
The equation of the sphere is by substituting $\alpha=3$ in (1) we get $x^{2}+y^{2}+z^{2}+3 \mathrm{x}-$ $4 y+5 z-6=0$

Angle of intersection of two spheres

$>$ The two solids may intersect in different types. The type of intersection depends on their sizes, angle of intersection relative to their axes and relative position of their axes.
$>$ The curve of intersection (COI) is a curve at the intersection of two or more solids. Curves of intersections are important for the production of components for engineering applications.
Angle of intersection of two spheres: The angle of intersection of two spheres is the angle between their tangent planes at the common point of intersection. Theorem:
If r_{1}, r_{2} are the radii, d is the distance between the centres, then angle of intersection is $\cos \theta=\frac{r_{1}{ }^{2}+r_{2}{ }^{2}-d^{2}}{2 r_{1} r_{2}}$
If the spheres are orthogonal then, $r_{1}^{2}+r_{2}^{2}=d^{2}$

Co-axial system of spheres

two or more three-dimensional linear forms share a common axis is called coaxil system.
A coaxial cable, as a common example, is a three-dimensional linear structure.

Limiting Point:

Point spheres of a coaxial system of spheres are called limiting points of the system. Let $x^{2}+y^{2}+z^{2}+2 \mu x+d=0$ where d is a constant and μ is a paramenter, represent a coaxal system of spheres.
for any sphere of the system the radius is $\sqrt{\mu^{2}-d}$ and centre is $(-\mu, 0,0)$
for limiting points of the system radius $=0$
So $\mu= \pm \sqrt{d}$
i) If $d=0$ and $\mu=0$ and hence the system has only one imiting point ($0,0,0$). In this case the system s a tochig type of cosal system of spheres at $(0,0,0)$
ii) If $\mathrm{d}>0$ then μ has two values $\pm \sqrt{d}$ and hence the system has two limiting points only
The limiting points are $(-\sqrt{d}, 0,0),((\sqrt{d}, 0,0)$. In this case no two spheres of the system intersect.
iii) If $d<0$ the system has no limiting points. In this case the system is intersecting .

1. Find the limiting points of the coaxal system defined by the spheres $x^{2}+y^{2}+z^{2}+4 x+2 y+2 z+6=0$ and $x^{2}+y^{2}+z^{2}+2 x-4 y-2 z+$ $6=0$
Sol:
Let $\mathrm{S}=x^{2}+y^{2}+z^{2}+4 \mathrm{x}+2 \mathrm{y}+2 \mathrm{z}+6=0, S^{\prime}=x^{2}+y^{2}+z^{2}+2 \mathrm{x}-4 \mathrm{y}-$ $2 \mathrm{z}+6=0$

The radical plane of the sphere of coaxal system is $S-S^{\prime}=0$
$2 x+2 y+4 z=0$ i.e., $x+y+2 z=0$
Equation of the sphere of the coaxal system of spheres is $x^{2}+y^{2}+z^{2}+4 \mathrm{x}+$ $2 y+2 z+6+\mu(x+y+2 z)=0$
Centre is $\left(\frac{-(4+\mu)}{2}, \frac{2-\mu}{2},-\mu-1\right)$ radius is $\sqrt{{\frac{(4+\mu)^{2}}{4}}^{2}+\frac{(2-\mu)^{2}}{4}+(\mu+1)^{2}-6}$
For limiting points radius $=0$
By solving we get $\mu=0,-2$
The limiting points are obtained by subtituting μ in centre ($-2,1,-1$), ($-1,2,1$)

Orthogonal spheres:-

The two spheres are said to be orthogonal to each other, if the tangent planes orthogonal to each other at the point of intersection.

Condition for Orthogonality:

Two spheres $x^{2}+y^{2}+z^{2}+2 u_{1} x+2 v_{1} y+2 w_{1} z+d_{1}=0, \quad x^{2}+y^{2}+z^{2}+$ $2 u_{2} x+2 v_{2} y+2 w_{2} z+d_{2}=$ are said to be orthogonal if
$2 u_{1} u_{2}+2 v_{1} v_{2}+2 w_{1} w_{2}=d_{1}+d_{2}$

Radical Plane

The radical plane of two spheres is defined as the locus of a point whose powers with respect to the spheres are equal.

Properties of the radical plane

$>$ The radical plane of two spheres passes through their point of intersection.
$>$ The radical plane of the two spheres is perpendicular to the line joining the centres.

