P.R. GOVERNMENT COLLEGE (A), KAKINADA
 B.Sc. II Year - Electronics - Semester - 4
 PAPER - 4 [Code: EL4202]
 w.e.f. 2018-19 ADMITTED BATCH

OP - AMP \& Digital IC-applications
4 Hours/Week [Total: 60 hrs]
Credits: 3

Course Learning Outcomes

The subject aims:
\checkmark Students will reliably demonstrate skills in solving simple second order differential equation.
\checkmark Provide hands-on opportunities for students to construct electronic circuits and build electronic projects of varying difficulty levels, ranging from simple to intermediate
\checkmark Cultivate and sustain students' interest in learning through circuit simulations and self-assessment activities
\checkmark Promote active learning through activities such as information search and presentations.

Learning Outcomes:

Students will be able to:
$>$ Recall Frequency modulation
> Illustrate Amplitude modulation

P.R. GOVERNMENT COLLEGE (A), KAKINADA
 B.Sc. II Year - Electronics - Semester - 4
 PAPER - 4 [Code: EL4202]
 w.e.f. 2018-19 ADMITTED BATCH
 OP - AMP \& Digital IC-applications

4 Hours/Week [Total: 60 hrs]
Credits: 3

SYLLABUS

Unit - I (12hrs)

Operational Amplifiers:
Definition, Basic op-amp Ideal op-amp, Block diagram of op-amp, op-amp parameters, inverting - non inverting amplifiers, concept of virtual ground. OP-Amp as a, summing amplifier,, differential amplifier, voltage follower, integrator, differentiator, Logarithmic amplifier.

Unit- II (12 hrs)

Op-Amp applications:
Voltage regulator, comparator, Schmitt trigger. Sine wave generator, square wave generator, triangular wave generator, Active filters (Basics) -low pass filter, high pass filter, band pass filters.

Unit - III (10 hrs)

IC555 Timer:
IC 555 timer pin diagram and its description, astable and monostable multivibrators.

Unit-IV (14 hrs):

Combinational Logic Circuits:
Design of Code convertor: BCD to Decimal decoder (IC7442), BCD to Seven Segment display decoder (logic diagram \& truth table only).

Sequential Logic Circuits:

Counters: Counters - Synchronous \& Asynchronous, Design of asynchronous Mod16, Mod-10, Mod N counter, Binary Up/Down Counter.

UNIT-V (12 hrs)

Data converters:
A/D converter: - Introduction, Digital to Analog (DAC) converter: Binary weighted Resistor DAC, R-2R Ladder type DAC, Analog to Digital Converters (ADC): Successive Approximation type ADC, Single Slop \& Dual-Slope type ADC.

Reference Books:

1. Jacob Millan, Micro Electronics, McGraw Hill.
2. Mithal G K, Electronic Devices and Circuits Thana Publishers.
3. Allan Motter shead, Electronic Devices and Circuits - An Introduction- Prentice Hall TEXT BOOKS:
4. G.K.Kharate-Digital electronics-oxford university press
5. M.Morris Mano, "Digital Design "3rd Edition, PHI, New Delhi.
6. Op Amp and Linear Integrated Circuits by Ramakant Gaykwad
7. Linear Integrated Circuits by Roy Choudary

P.R. GOVERNMENT COLLEGE (A), KAKINADA
 B.Sc. II Year - Electronics - Semester - 4
 PAPER - 4 [Code: EL4202]
 w.e.f. 2018-19 ADMITTED BATCH

OP - AMP \& Digital IC-applications
4 Hours/Week [Total: 60 hrs]
Credits: 3

Model Question Paper

Note: - Set the question paper as per the blue print given at the end of this model paper.
Time: $2 \frac{1}{2} \mathrm{Hrs}$.
Max. Marks: 60

Section	Questions to be given	Questions to be answered	Marks
A	5	3	$3 \times 10 \mathrm{M}=30 \mathrm{M}$
B	9	6	$6 \times 5 \mathrm{M}=30 \mathrm{M}$
Total	14	9	60 M

Blue Print

Chapter Name	Essay Questions $\mathbf{1 0}$ marks	Short Questions $\mathbf{5}$ marks	Problems $\mathbf{5}$ marks	Marks allotted
Operational Amplifiers	1	1	2	25
Op-Amp Applications	1	2		20
IC555 Timer	1	1	---	15
Combinational Logic Circuits \& Sequential Logic Circuits Data converters Total Marks 1	1		15	

Note: At least two problems should be answered.

ESSAY QUESTIONS

UNIT-I: - Operational Amplifiers:

1. Draw the circuit diagram of an operational amplifier and briefly explain each part
2. Mention the characteristics of an ideal Op-Amp. Explain the concept of virtual ground in Op-Amp. Draw the circuit of an Op-Amp inverting amplifier and its action.
3. Draw the circuit diagrams of inverting and non inverting amplifier and explain their operations.
4. What are ideal characteristics of Op-Amp? Explain briefly about
(a) Virtual ground
(b) Input offset voltage
(c) CMRR
(d) Slew rate
5. Draw and explain Op-Amp application Integrator and Differentiator with output waveforms.

UNIT-II: - Op-Amp applications:

1. Explain the working of Op-Amp as: (b) Differentiator (c) Integrator
2. Explain the working of Op-Amp as: (a) Comparator
3. Draw the circuit of Schmitt trigger using Op-Amp and describe its working with the help of waveforms.
4. Draw the circuit of Triangular Wave generator using Op-Amp and describe its working with the help of waveforms.
5. Explain how operational amplifier can be used as a:
(a) Summing amplifier
(b) Band pass filter

UNIT-III: - IC555 Timer:

1. Draw the circuit of Astable multivibrator using IC-555 and describe it's working. Draw the relevant output wave forms.
2. What is a multivibrator? Describe the operation of Monostable and Astable multivibrator using timer IC-555.
3. Draw the circuit of a Monostable multivibrator using IC-555 and describe it's working. Draw the relevant output wave forms.
4. Draw the pin diagram of Timer IC-555 and explain each pin.

UNIT-IV: - Combinational Logic Circuits:

1. Design BCD to Seven Segment display decoder with a logic diagram \& give its truth table.
2. What is a counter? Design and explainMod-16 counter.
3. What is a counter? Design and explain Mod-10 counter.
4. Draw and explain BCD to Decimal decoder (IC7442).
5. What is a counter? Design and explain Mod-N counter.

UNIT-V: - Data converters:

1. Explain the working of an A / D converter.
2. Explain the working of a D/A converter.
3. Draw and explain Single Slope \& Dual-Slope type ADC.
4. Draw and explain R-2R Ladder type DAC

SHORT ANSWER TYPE OUESTIONS

UNIT-I: - Operational Amplifiers:

1. Give the characteristics of an ideal Op-Amp.
2. What is the concept of virtual ground and explain it.
3. Define an ideal differential amplifier.
4. Describe the working of Op-Amp as Logarithmic amplifier.
5. Explain Op- Amp as summing amplifier.
6. How does Op-Amp act as a voltage follower?

UNIT-II: - Op-Amp applications:

1. Discuss the working of $\mathrm{Op}-\mathrm{Amp}$ voltage regulator.
2. Explain the working of Op-Amp as comparator.
3. Explain how Op-Amp acts as low, high pass filters
4. Explain how Op-Amp acts as band pass filter
5. Explain any two Active filters using Op-Amp.

UNIT-III: - IC555 Timer:

1. Give the pin diagram of IC 555 timer.
2. Write a brief note on Monostable multivibrator using IC-555.
3. Write a brief note on Astable multivibrator using IC-555..

UNIT-IV: - Combinational Logic Circuits:

1. Compare Asynchronous and synchronous counters.
2. Draw Mod-16 Counter.
3. Draw Mod- 10 Counter.
4. Design binary up/down counter

UNIT-V: - Data converters:

1. Explain Binary weighted Resistor DAC.
2. Explain Successive Approximation type ADC.
3. Give a brief explanation of Single Slope ADC.
4. Give a brief explanation of Dual Slope ADC.

PROBLEMS

UNIT-I: - Operational Amplifiers:

1. The open loop output impedance of a Op-Amp is $5 \mathrm{~K} \Omega$. It's open loop gain is 60 dB . The feedback component $\mathrm{R}_{1}=\mathrm{k} \Omega$ and $\mathrm{R}_{0}=200 \mathrm{k} \Omega$ are connected. Find the value of closed loop output impedance.
2. An inverting amplifier has $\mathrm{R}_{1}=10 \mathrm{k} \Omega$ and $\mathrm{R}_{0}=125 \mathrm{k} \Omega$. Calculate the output voltage, input resistance and input current for an input voltage 4 volt.
3. Design a non-inverting amplifier circuit that is capable of providing a voltage gain of 10 . Assume on ideal operational amplifier. Resistor should not exceed $30 \mathrm{k} \Omega$.
4. What is the maximum closed-loop voltage gain that can be used when the input signal varies by 0.5 V in $10 \mu \mathrm{~s}$, for an OP-AMP having slew rate $\mathrm{SR}=4 \mathrm{~V} / \mu \mathrm{s}$?
5. An inverting amplifier has $\mathrm{R}_{1}=10 \mathrm{~K} \Omega$ and $\mathrm{R}_{\mathrm{f}}=150 \mathrm{k} \Omega$. Find the output voltage, the input resistance and the input current for an input voltage of 1 V .
6. Calculate the output voltage of a non-inverting constant gain multiplier with $\mathrm{R}_{1}=100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{f}}$ $=600 \mathrm{k} \Omega$ and $\mathrm{V}_{1}=2 \mathrm{~V}$.
7. Calculate the ouput voltage of lan OP-AMP amplifier for the following set of voltages and resistors. $\mathrm{R}_{\mathrm{f}}=1 \mathrm{M} \Omega$
(a) $\mathrm{v}_{1}=1 \mathrm{~V}, \mathrm{v}_{2}=2 \mathrm{~V}, \mathrm{v}_{3}=3 \mathrm{~V}, \mathrm{R}_{1}=500 \mathrm{k} \Omega, \mathrm{R}_{2}=1 \mathrm{M} \Omega, \mathrm{R}_{3}=1 \mathrm{M} \Omega$.
8. In a subtractor circuit $R_{1}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{f}}=20 \mathrm{~K} \Omega, \mathrm{v}_{1}=5 \mathrm{~V}$ and $\mathrm{v}_{2}=10 \mathrm{~V}$. Find the value of output voltage.
9. The input to the differentiator circuit is a sinusoidal voltage of peak value 5 mV and frequency 1 kHz . Find the output voltage if $\mathrm{R}=10 \mathrm{~K} \Omega$ and $\mathrm{C}=1 \mu \mathrm{~F}$.
