Thermo Gravimetric Analysis - Applications

SAIKRISHNA UGGU

Lecturer in Chemistry

P. R. Govt. College (A) KAKINADA

Contents...

TGA - Applications
TGA curves of different compounds
References

Applications of Thermogravimetry...

- > To determine the composition of materials
- > To predict thermal stability of materials
- Determination of purity of primary and secondary standards
- Automatic thermo gravimetric analysis
- > Characterization of the materials

Applications of Thermogravimetry...

- Decomposition Kinetics of Materials
- Corrosion Studies of different materials
- Moisture and Volatile Contents of different materials
- Study of drying temperatures of gravimetric precipitates

Applications of TGA...

> Analysis of Copper sulphate penta hydrate > Analysis of Calcium oxalate mono hydrate Automatic determination of a mixture of calcium and magnesium as their oxalates. Thermal stability of polymers > Oxidative stability of polymers

TGA of Calcium Carbonate (CaCO₃)

$CaCO_{3}(s)$ — $CaO(s) + CO_{2}(g) ; 850°C$

TGA Curve of CaCO₃

TGA of Calcium Carbonate (CaCO₃)

Pure Calcium carbonate is heated to 850 °C, it loses 44% of its weight. Also, the gas evolved can be collected and identified as $CO_{2.}$ This observation virtually confirms that the following reaction takes place at this temperature.

 $CaCO_{3}(s)$ — CaO(s) + CO_{2} (g) ; 850°C

TG Curve of CuSO₄.5H₂O

DTG Curve of CuSO₄.5H₂O

TGA: Calcium oxalate decomposition

Step: (i). $CaC_2O_4.H_2O(s) \longrightarrow CaC_2O_4(s) + H_2O(g)100 - 250 \circ C$ Step: (ii). $CaC_2O_4(s) \longrightarrow CaCO_3(s) + CO(g) 400 - 500 \circ C$ Step: (iii). $CaCO_3(s) \longrightarrow CaO + CO_2(g)$; 650 - 850 °C

Thermogram of Calcium Oxalate monohydrate

Thermogram and DTG curve of Calcium Oxalate

Automatic determination of a mixture of Ca^{2+} and Mg^{2+} Step: (a). $CaC_2O_4.H_2O(s) \longrightarrow CaC_2O_4(s) + H_2O(g)$; $100 - 250 \circ C$ Step: (b). $CaC_2O_4(s) \longrightarrow CaCO_3(s) + CO(g)$; $400 - 500 \circ C$

Step: (c). $CaCO_3(s) \rightarrow CaO + CO_2(g); 650 - 850 °C$

Automatic determination of a mixture of Ca & Ma as their oxalates

Step: (d). $MgC_2O_4.2H_2O(s)$ $MgC_2O_4(s) + 2H_2O(g)$; $100 - 250 \circ C$

Step: (e). $MgC_2O_4(s)$ $400 - 500 \circ C$ $MgO(s) + CO(g) + CO_2(g) ;$ Automatic determination of a mixture of Calcium and Magnesium as their oxalates

Thermal stability of Polymers

Oxidative stability of Polypropylene

References

- VOGEL'S Text book of Quantitative Chemical Analysis, 6th Edition.
- Instrumental Analysis by Skoog, Holler and Crouch.
- TAINSTRUMENTS.COM

Thank You.....

