
*	※
米 坐	※ 火
	不米
*	米
*	*
	※ ※
	不兴
* P.R.Govt.College (A), Kakinada	※
* I.N.GUVI.CUIEge (A), Nakiliaua	米
★ (Affiliated to Adikavi Nannaya University)	※ ※
$\overset{\pi}{\ast}$ Department of chemistry	不必
B.Sc. Chemistry Syllabus under CBCS	米
*	米
☆ ※ 2017-18	不米
*	米
*	*
*	※ ※
	不米
*	米
*	米
*	※ ※
	不必
*	米
** 2017-18 ** **	*************
*	※ 火
* *****	
$(\mathbf{A} \wedge \mathbf{A} \wedge$	

****************	P.R.Govt. College (A), Kakinada	**************
*	Recommended Composition of the Board of Studies of Chemistry	不 ※
*	And it's Functions of an Autonomous College	*
*	April-2017-18	*
*	· • • • • • • • • • • • • • • • • • • •	*
*		*
*	I Composition	ジャン
不 ※		ドメ
※	1. Head of the Department concerned (Chairman):	
※	Sri E.V.S. Subrahmanyam, M.Sc., M.Phil, B.Ed	
*	2. The entire faculty of each specialization.	*
*	1. Dr. M. Mahaboob Pacha, M.Sc., M.Phil, PhD.	*
*	2. Sri T.Vara Prasad, M.Sc., M.Phil., M. Ed.,	*
*	3. Sri D.Rama Rao, M.Sc., B. Ed., M.Phil.	*
*	4. Sri V.Mallikarjuna Sarma, MSc, M.Phil, NET	*
*	3. Two experts in the subject from outside the college to be nominated by	*
※ ※	the Academic Council	米
ボ		ネシ
	1. Dr. V .Sambasivarao, Lecturer in Chemistry, Arts College,	
~ ※	Rajahmundry 2. Dr. K. Jhansi, Lecturer in Chemistry, Ideal Degree College,	
*	Z. DI. K. Jhansi, Lecturer in Chemistry, ideal Degree Conege, Kakinada	
*	Kakinaua	*
*	4. One expert to be nominated by the Vice-Chancellor from a panel of	*
*	six recommended by the College Principal	*
*	1. Prof. K. Deepti, Adikavi Nannaya University, Rajahmundry	*
*	5. One representative from industry/ Corporate Sector/ allied area	米
*	relating to Placement.	*
*		*
※ ※	1. Dr. N.Krishna Prakasam, Facility Manager, SAR CHANDRA	米
*	ENVIRON SOLUTIONS PVT.LTD.KAKINADA	ボ
ズと	6. One postgraduate meritorious alumnus to be nominated by the Principal.	デン
************	типария	***********
※		イ 米

• •		• •

茶	
茶	The chairman, Board of Studies, may with the approval of the * Principal of the College, Co-opt. *
茶	1. Sri. Nemani Ramam, M.Sc., M.Phil
※ II.	Term.
茶	茶
茶	The term of the nominated members shall be two years.
** III. **	Meeting **
*	The Principal of the College shall draw the schedule for meeting of
*	the Board of Studies for different Departments. The meeting may be
*	scheduled as and when necessary but at least once a year.
*	*
₩ ^{IV.}	Functions
************************************	The chairman, Board of Studies, may with the approval of the Principal of the College, Co-opt.
	Prepare syllabus and various courses keeping in view the objectives of the
ズ	College interest of the stakeholders and national requirement for
ボ	consideration and approval of the Academic Council.
が と b)	Suggest methodologies for innovative teaching and evaluation techniques.
	Suggest panel of names to the Academic Council for appointment of
715	examiners.
、 と	the Department/College.
ネ 火	
<u></u>	
入 入 人	
*	
*	
*	
*	
*	*
***************************************	Coordinate research, Teaching, Extension and other academic activities in the Department/College. ** ** ** ** ** ** ** ** ** ** ** ** **
*	******
*	*****
*	******

	*******	*************
ネ 米	Signatures of the	e members who attended the *
*	Board of	studies in Chemistry.
∽ ※	1. Sri E. V. S. Subrahmanyam	Chairman & Lecturer in Charge
* * *	2. Dr. K. Deepti,	University representative**Adikavi Nannaya University**Rajamahendravaram**
* * * *	3. Dr. N. K. Prakasam,	Facility Manager,**Industry representative**SAR Chandra Environ Solutions**Pvt. Ltd.**
****************	4. Dr. V. Sambasivarao,	e members who attended the**studies in Chemistry.**Chairman & Lecturer in Charge**University representative**Adikavi Nannaya University**Rajamahendravaram**Facility Manager,**Industry representative**SAR Chandra Environ Solutions**Pvt. Ltd.**Subject expert**Lecturer in Chemistry,**Govt. Arts College,**Rajamahendravaram**Subject expert**Lecturer in Chemistry,**Kajamahendravaram**Alumnus, Principal, Retd.**
* * *	5. Dr. K. Jhansi Lakshmi	Subject expert**Lecturer in Chemistry,**Ideal Degree College, Kakinada**
*	6. Sri. N. Ramam	Alumnus, Principal, Retd.
☆ ※	7. Dr. M. Mahaboob Pacha	Member **
*	8. Sri T. Vara Prasad	Member *
*	9. Sri D. Rama Rao	Member 💥
***************************************	10. Sri V. Mallikarjuna Sarma ★★★★★★★★★★★★★★	Member * Member * Member * * * <
-1		

		cademic year. Annexure
Month	Activity proposed	Faculty member in charge
June-17	Departmental staff meeting to review results and class work allotment	E.V.S.Subrahmanyam
	Preparation of curricular plans, time-tables etc.,	
	Remedial coaching classes for II & III year supplementary exams	
July-17		
	Bridge classes for I year students	
	Student awareness programmes on ragging& eve teasing - consequences, self-discipline, career guidance, higher education opportunities etc.,	T.Vara prasad
August- 17	Conference on prospects in pharmaceutical industries	E.V.S.Subrahamanyam
17	Study tour / Field trips	
Sept-17	Ozone day	
$\frac{\text{Sept-17}}{\text{Oct-17}}$	MOLE Day	D.Ramarao
001-17	Faculty development programme	Dr.M.M.Pacha
Nov-17	11th National Education Day – Out reach Programme to nearby school	
Dec-17	World AIDS Day	
	Chemistry day & Chem fest	V.Mallikarjuna sarma
Jan-18	10 days coaching for PG entrance examinations in chemistry Study tour / Field trips	V.Mallikarjuna sarma
Feb-18	NATIONAL SCIENCE DAY	V.Mallikarjuna sarma
March-18	Consumer awareness day	E.V.S.Subrahamanyam

∦

* * *

*		*
******************	2. Organizing National/ State level seminars/Workshops/ Conferences/	ネ 上
	Training programmes etc., with topics and other details.	デ
彩	(Mandatory for each Department)	彩
*	i) Staff development programme	米
*	ii) Training in the use of HPLC	*
	iii) Awareness on OZONE protection	NK NK
デ	iv) National Chemistry day	71
*	v) Chem. fest	米
*	vi) National Science day 2018	米
*	vii) Guest lectures	*
	viii) National seminar in chemistry	
ネ	ix) Training in Soil analysis	ボ
*	x) Training in water analysis	米
*		米
24	3. Change of modules in the syllabus content.	<u>×</u>
	Syllabus changed for first and second years as per university regulations.	
彩	CBCS introduced for final year w.e.f. 2017-18.	彩
*		米
⋇	4. Plan for utilization of funds for Autonomous/CPE/other grants	米
×	available for arranging guest lectures, faculty improvement	×
	programmes, study tours, equipping laboratories, reference books&	
彩	other necessary teaching-learning material with ICT enabled	彩
*	teaching.	
N.		米
※	I Study visits to: Da 50.000	* *
•	I. Study visits to: Rs, 50,000	******************
•		•
•	1. Visakha Steel Plant, Visakhapatnam	•
•	 Visakha Steel Plant, Visakhapatnam Hetero Laboratories, Nakkapally 	•
•	 Visakha Steel Plant, Visakhapatnam Hetero Laboratories, Nakkapally Dr. Reddy's Laboratories, Yanam. 	•
•	 Visakha Steel Plant, Visakhapatnam Hetero Laboratories, Nakkapally Dr. Reddy's Laboratories, Yanam. National Institute of Hydrololgy, Kakinada. 	•
•	 Visakha Steel Plant, Visakhapatnam Hetero Laboratories, Nakkapally Dr. Reddy's Laboratories, Yanam. National Institute of Hydrololgy, Kakinada. 	•
•	 Visakha Steel Plant, Visakhapatnam Hetero Laboratories, Nakkapally Dr. Reddy's Laboratories, Yanam. National Institute of Hydrololgy, Kakinada. SAR Chandra Environ Solutions, Kakinada. ONGC mini refinery, Tatipaka. 	•
•	 Visakha Steel Plant, Visakhapatnam Hetero Laboratories, Nakkapally Dr. Reddy's Laboratories, Yanam. National Institute of Hydrololgy, Kakinada. SAR Chandra Environ Solutions, Kakinada. ONGC mini refinery, Tatipaka. Soil analysis laboratory, Samalkot. 	•
•	 Visakha Steel Plant, Visakhapatnam Hetero Laboratories, Nakkapally Dr. Reddy's Laboratories, Yanam. National Institute of Hydrololgy, Kakinada. SAR Chandra Environ Solutions, Kakinada. ONGC mini refinery, Tatipaka. Soil analysis laboratory, Samalkot. IICT,HYD 	•
•	 Visakha Steel Plant, Visakhapatnam Hetero Laboratories, Nakkapally Dr. Reddy's Laboratories, Yanam. National Institute of Hydrololgy, Kakinada. SAR Chandra Environ Solutions, Kakinada. ONGC mini refinery, Tatipaka. Soil analysis laboratory, Samalkot. IICT,HYD 	•
•	 Visakha Steel Plant, Visakhapatnam Hetero Laboratories, Nakkapally Dr. Reddy's Laboratories, Yanam. National Institute of Hydrololgy, Kakinada. SAR Chandra Environ Solutions, Kakinada. ONGC mini refinery, Tatipaka. Soil analysis laboratory, Samalkot. IICT,HYD 	•
•	 Visakha Steel Plant, Visakhapatnam Hetero Laboratories, Nakkapally Dr. Reddy's Laboratories, Yanam. National Institute of Hydrololgy, Kakinada. SAR Chandra Environ Solutions, Kakinada. ONGC mini refinery, Tatipaka. Soil analysis laboratory, Samalkot. IICT,HYD Venky parenterals, Yanam 	•
•	 Visakha Steel Plant, Visakhapatnam Hetero Laboratories, Nakkapally Dr. Reddy's Laboratories, Yanam. National Institute of Hydrololgy, Kakinada. SAR Chandra Environ Solutions, Kakinada. ONGC mini refinery, Tatipaka. Soil analysis laboratory, Samalkot. IICT,HYD Venky parenterals, Yanam 	
•	 Visakha Steel Plant, Visakhapatnam Hetero Laboratories, Nakkapally Dr. Reddy's Laboratories, Yanam. National Institute of Hydrololgy, Kakinada. SAR Chandra Environ Solutions, Kakinada. ONGC mini refinery, Tatipaka. Soil analysis laboratory, Samalkot. IICT,HYD Venky parenterals, Yanam Sophisticated version UV-Visible spectrophotometer- 5.0 lakhs 	
•	 Visakha Steel Plant, Visakhapatnam Hetero Laboratories, Nakkapally Dr. Reddy's Laboratories, Yanam. National Institute of Hydrololgy, Kakinada. SAR Chandra Environ Solutions, Kakinada. ONGC mini refinery, Tatipaka. Soil analysis laboratory, Samalkot. IICT,HYD Venky parenterals, Yanam I. Sophisticated version UV-Visible spectrophotometer-	
•	 Visakha Steel Plant, Visakhapatnam Hetero Laboratories, Nakkapally Dr. Reddy's Laboratories, Yanam. National Institute of Hydrololgy, Kakinada. SAR Chandra Environ Solutions, Kakinada. ONGC mini refinery, Tatipaka. Soil analysis laboratory, Samalkot. IICT,HYD Venky parenterals, Yanam I. Sophisticated version UV-Visible spectrophotometer-	
•	 Visakha Steel Plant, Visakhapatnam Hetero Laboratories, Nakkapally Dr. Reddy's Laboratories, Yanam. National Institute of Hydrololgy, Kakinada. SAR Chandra Environ Solutions, Kakinada. ONGC mini refinery, Tatipaka. Soil analysis laboratory, Samalkot. IICT,HYD Venky parenterals, Yanam I. Sophisticated version UV-Visible spectrophotometer-	
•	 Visakha Steel Plant, Visakhapatnam Hetero Laboratories, Nakkapally Dr. Reddy's Laboratories, Yanam. National Institute of Hydrololgy, Kakinada. SAR Chandra Environ Solutions, Kakinada. ONGC mini refinery, Tatipaka. Soil analysis laboratory, Samalkot. IICT,HYD Venky parenterals, Yanam I. Sophisticated version UV-Visible spectrophotometer-	
*************	 Visakha Steel Plant, Visakhapatnam Hetero Laboratories, Nakkapally Dr. Reddy's Laboratories, Yanam. National Institute of Hydrololgy, Kakinada. SAR Chandra Environ Solutions, Kakinada. ONGC mini refinery, Tatipaka. Soil analysis laboratory, Samalkot. IICT,HYD Venky parenterals, Yanam I. Sophisticated version UV-Visible spectrophotometer-	*************

S.No. New course proposed Justification Employability 1 Under graduate course in There is dearth of skilled persons to operate various Technical assistants, Quality Industrial chemistry instruments like uv visible spectrophotometer, Atomic absorption spectrophotometer, PH meter, flame photometer, rotavapour Plant supervisor
shilanthropists, parents, faculty etc., - Strategies to be recommended 7. Introduction of new programmes –PG/UG/Diploma and certificate courses. New courses to be proposed. S.No. New course Justification Employability 1 Under graduate There is dearth of skilled Technical 1 Under graduate persons to operate various assistants, Quality Industrial chemistry instruments like uv visible control managers Spectrophotometer, Plant supervisor etc. PH meter, flame photometer, rotavapour instrument,
In the second s
S.No. New course proposed Justification Employability 1 Under graduate course in There is dearth of skilled persons to operate various Technical assistants, Quality Industrial chemistry instruments like uv visible spectrophotometer, Atomic absorption spectrophotometer, PH meter, flame photometer, rotavapour instrument, Plant supervisors
1Under graduate course in Industrial chemistryThere is dearth of skilled persons to operate various instruments like uv visible spectrophotometer, Atomic absorption spectrophotometer, etc.Technical assistants, Quality Plant supervisors etc.1Under graduate course in Industrial chemistryThere is dearth of skilled persons to operate various instruments like uv visible spectrophotometer, Atomic PH meter, flame photometer, instrument,Technical assistants, Quality control managers etc.
HPLC.GLC, distillation, etc which play as key role in any industry related to chemistry.

2. Dr. D. Madhava Sarma, GDC, Tadepalligudem
3. Dr. V. Sambasiva Rao, Govt. Arts College, Rajahmundry.
4. Dr. K. A.R.S.S.Prasad, VS Krishna College, Visakhapatnam.
 Sri S.V. Ramana, Arts College, Rajahmundry Sri Machi Raju, Arts College, RajahmundrY
7. Smt. C. Jyoti, St. Therisa college, Eluru.
8. P. Krishna kumar, S.K.B.R.College, Amalapuram.
9. Dr. G. Venkatarao,GDC,Vijayavada
10. Shri B.Venkatarao, GDC,Tadepalligudem 11. Dr.Ramchadarao,Y.N.College,Narasapuram
11. Di.Kanenadarao, 1.iv.Conege, ivarasapuran
Department of Chemistry BOS Meeting Dt.13 - 4-2017
Resolutions:
<u>Kesonutions.</u>
Meeting of Board of studies in chemistry is convened on 13-4-17 in the
guest room of the College. The Principal Dr. Chappidi Krishna, Dr.K.Deepthi,
University Nominee, Dr. N.K.Prakasam, Facility Manager, SAR Chandra
Environ Solutions Pvt. Ltd., Dr.V.Sambasiva Rao, Subject Expert, Govt.
College, Rajahmundry, Dr Jhansi, Lecturer in Chemistry, Ideal College,
Kakinada., all members of the faculty of Chemistry and student representatives
attended the meeting. Agenda items are discussed and resolutions are made.
 attended the meeting. Agenda items are discussed and resolutions are made. 1. It is resolved to continue Choice based credit system in the Chemistry combination programmes as per the directions of the CCE, Hyderabad to the first year and second year and final year students w.e.f. 2017-18 2. Enhance the internal assessment component from 30% to 40% in theory to first year (admitted batch). 3. It is resolved to allot project works for final year students who opt for project work in chemistry preferably industry based. 4. It is resolved to conduct departmental activities such as Ozone day, Chem fest, Chemistry day and Science day etc. 5. It is resolved to offer subject electives and skill based electives in the V and VI semesters respectively. 6. It is resolved to implement the recommended Pedagogy for the first semester 2017-18. 7. Resolved to conduct practical examinations semester wise.
combination programmes as per the directions of the CCE. Hyderabad to the first
vear and second year and final year students we f 2017-18
2 Enhance the internal assessment component from 30% to 40% in theory to first
vear (admitted batch)
3 It is recolved to allot project works for final year students who ont for
5. It is resolved to anot project works for final year students who opt for
4. It is resolved to conduct departmental activities such as Ozona day. Chem
4. It is resolved to conduct departmental activities such as Ozone day, Chem
5 It is resolved to offer subject electives and skill based electives in the V and
VI semesters respectively
6 It is recolved to implement the recommanded Dedegoogy for the first compater
o. It is resolved to implement the recommended redagogy for the first semester
2017-10.
/. Resolved to conduct practical examinations semester wise.

 ** The following paper setters are recommended. *. Dr. V.Sambasiva Rao, Govt.Arts College, Rajahmundry. *: K.A.R.S.S.Prasad, VS Krishna College, Nisakhapatnam. *: Sri S.V.Ramana, Arts College, Rajahmundry *: Sri Machi Raju, Arts College, Rajahmundry. *: V. U. Satyanarayana, GDC, Tuni *: N. V. Sudhakar, GDC, Tuni *: N. V. Sudhakar, GDC, Tuni *: It is resolved to organize Guest lectures by eminent professors. *: Resolved to implement pass minimum for internal assessment for CBSE pattern students as the pattern is learner oriented. *: 10. NEW COURSES: *: It is resolved to explore the possibility of introducing a new course in B.Sc Pharmaceuticals/Industrial Chemistry as Restructed course. *: 11. Resolved to submit proposals to conduct a faculty development programme in instrumentation techniques/ advanced topics with the assistance of industry representatives and university representatives. *: 12. Resolve to assist the orphan children of below two years age being taken by department of Women and Child Welfare as an extension activity with the 	**************
The following paper setters are recommended.	米
i. Dr. V.Sambasiva Rao, Govt.Arts College, Rajahmundry.	米
ii. K.A.R.S.S.Prasad, VS Krishna College, Visakhapatnam.	米
iii. Sri S.V.Ramana , Arts College, Rajahmundry	米
iv. Sri Machi Raju, Arts College, Rajahmundry.	米
×V.U. Satyanarayana, GDC, Tuni	米
Vi. R. Brahmaji, GDC, Ramachandrapuram	尜
Vii. N. V. Sudhakar, GDC, Tuni	米
* 8. It is resolved to organize Guest lectures by eminent professors.	米
9. Resolved to implement pass minimum for internal assessment for CBSE	米
* pattern students as the pattern is learner oriented.	尜
★ 10. NEW COURSES:	尜
It is resolved to explore the possibility of introducing a new course in B.Sc	尜
* Pharmaceuticals/Industrial Chemistry as Restructed course.	米
*	米
✤ . 11. Resolved to submit proposals to conduct a faculty development programme	米
in instrumentation techniques/ advanced topics with the assistance of industry	米
* representatives and university representatives.	米
12. Resolve to assist the orphan children of below two years age being taken	米
by department of Women and Child Welfare as an extension activity with the	米
* 13. Resolved to change the syllabus components in semester I to semester	*
II and vice versa. Sly, Semester III to IV and vice versa on par with	*
the affiliating university.	*
14. It is proposed to give 33.3% weitage for competitive exam questions	*
pertaining to the syllabus prescribed.	*
*	※
	※
	*
	シャン
	シン
	うと
	不 火
<pre> * funds contributed by the faculty members of the department. * 13. Resolved to change the syllabus components in semester I to semester * II and vice versa. Sly, Semester III to IV and vice versa on par with the affiliating university. * 14. It is proposed to give 33.3% weitage for competitive exam questions pertaining to the syllabus prescribed. * @@@@@@@@@@@ ** ** ** ** ** ** ** ** ** *</pre>	***********
	ド
	デン
~ ************************************	•
ネネネネネネネネネネネネネネネネネネネネネネネネネネネネ	「

YEAR		(Affiliated t (W.e.f. ad Dep	vt.College (A), Kaki o ADIKAVI NANNAYA UNIV Imitted batch 2017 – 2018) Dartment of chemistry hemistry Syllabus under Cl	ERSITY)	
YEAR	SEMESTER	PAPER	TITLE	MARKS	CREDITS
	Ι	Ι	Inorganic and Organic Chemistry	100	03
Ι			Practical – I	50	02
	II	II	Physical and General Chemistry	100	03
			Practical – II	50	02
	III	III	Inorganic and organic Chemistry	100	03
II			Practical – III	50	02
11	IV	IV	Spectroscopy and Physical Chemistry	100	03
			Practical – IV	50	02
		V	Inorganic ,Organic and Physical Chemistry	100	03
	V		Practical – V	50	02
	, v	VI	Inorganic ,Organic and Physical Chemistry	100	03
			Practical – VI	50	02
III	* Any one	VII (A)*	Elective	100	03
	Paper from		Practical - VII A	50	02
	VII A, B	VII (B)*	Elective	100	03
	and C		Practical - VII B	50	02
		VII (C)*	Elective	100	03
			Practical - VII C	50	02

** Any one	VIII (A)**	Cluster Electives - I :	100	0
cluster		VIII-A-1	100	C
		VIII-A-2	100	C
from VIII, A, B and C		VIII-A-3	50	C
,			50	0
			50	0
	VIII (B)**	Cluster Electives - II ::	100	C
		VIII-B-1	100	C
		VIII- B-2	100	0
		VIII-B-3	50	C
			50	0
VI			50	0
	VIII (C)**	Cluster Electives - III ::	100	0
		VIII-C-1	100	0
		VIII-C-2	100	0
		VIII-C-3	50	0
			50	0
			50	0
		VIII-C-3	50	

FIRST YEAR 2017-18 <u>SEMESTER – 1</u> Paper 1- Inorganic & Organic Chemistry 60hrs (4h/w) OBJECTIVES: 1. Gains knowledge of importance of p-block elements & synthetic application of organo metallic compounds 2. Understands the role of reagents and reaction mechanism, basics of stereochemistry of organic compounds INORGANIC CHEMISTRY 04 hrs (2h / w UNT – 1 P-block elements – 1 15h Group -13: Synthesis and structure of diborane and higher boranes (B ₄ H ₁₀ and B ₅ H ₉), Boron-nitrogen compounds (B ₃ N ₄ H ₄ and BN) Group -14: Preparation and applications of silanes and silicones. Group - 15: Preparation and applications of silanes and silicones. Group - 16: Classifications of oxides based on (i) Chemical behavior and (ii) Oxygen content. Group-17: Inter halogen compounds and pseudo halogens. 2. Organometallic Chemistry ND Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkys of L i and Mg. ORGANIC CHEMISTRY ND Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkys of L i and Mg. ORGANIC CHEMISTRY ND Definition - flassification of organometallic compounds - nomenclature, preparation and applications of alkys of L i and Mg. ORGANIC CHEMISTRY ND Diffurition - flastification of organometallic compounds - nomenclature, preparation and applications influencing the polarization of covalent bonds, electro negativi - inductive effect (A) pplication of inductive effect (a) Basicity of amines (b) Acidity - inductive effect Application to stability of carbonium ions. Resonance of Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugatio and is application to stability of carbonium ions, Free radicals and alkenes, carbanior carbones. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radice Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNT-IV 1. Acyclic Hydrogen	FIDST VEA	R 2017-18
Paper I - Inorganic & Organic Chemistry 60hrs (4h/w) OBJECTIVES: 1. Gains knowledge of importance of p-block elements & synthetic application of organo metallic compounds 2. Understands the role of reagents and reaction mechanism, basics of stereochemistry of organic compounds INORGANIC CHEMISTRY 30 hrs (2h / w UNT -I 70 P-block elements -I 15h Group-13: Synthesis and structure of diborane and higher boranes (B ₄ H ₁₀ and B ₅ H ₉), Boron-nitrogen compounds (B ₂ N ₃ H ₆ and BN) Group - 14: Preparation and applications of silanes and silicones. Group - 15: Preparation and reactions of hydrazine, hydroxylamine. UNIT-I 8h Group - 16: Classifications of oxides based on (i) Chemical behavior and (ii) Oxygen content. 7h Organometallic Chemistry 7h Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. 30hrs (2h/w) ORGANIC CHEMISTRY 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H ₂ O, NH ₃ & AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effet application to (a) acidity of phenol, and (b) acidity of arboxylic acids. Hyper conjugatia and its application to stability of carbonium ions. Fr		
60hrs (4h/w) OBJECTIVES: 1. Gains knowledge of importance of p-block elements & synthetic application of organo metallic compounds 2. Understands the role of reagents and reaction mechanism, basics of stereochemistry of organic compounds Signification of preagents and reaction mechanism, basics of stereochemistry of organic compounds INORGANIC CHEMISTRY 30 hrs (2h / w UNIT -I P-block elements –I Significations of diborane and higher boranes (B ₄ H ₁₀ and B ₅ H ₉), Boron-nitrogen compounds (B ₂ N ₃ H ₆ and BN) Group - 13: Synthesis and structure of diborane and higher boranes (B ₄ H ₁₀ and B ₅ H ₉), Boron-nitrogen compounds (B ₂ N ₃ H ₆ and BN) Group - 14: Preparation and reactions of silanes and silicones. Organo - 14: Preparation and reactions of silanes and silicones. Orgoup - 16: Classifications of oxides based on (i) Chemical behavior and (ii) Oxygen content. Organometallic Chemistry 7h Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. ORGANIC CHEMISTRY Jong colspan= Chemistry Th Definition - classification		
OBJECTIVES: 1. Gains knowledge of importance of p-block elements & synthetic application of organo metallic compounds 2. Understands the role of reagents and reaction mechanism, basics of stereochemistry of organic compounds INORGANIC CHEMISTRY 30 hrs (2h / w UNIT -I P-block elements –I IS Group-13: Synthesis and structure of diborane and higher boranes (B ₄ H ₁₀ and B ₅ H ₉), Boron-nitrogen compounds (B ₃ N ₃ H ₆ and BN) Group - 14: Preparation and applications of silanes and silicones. Group - 15: Preparation and reactions of hydrazine, hydroxylamine. UNIT -I 1. p-block elements -II Sh Group - 16: Classifications of oxides based on (i) Chemical behavior and (ii) Oxygen content. Group-17: Inter halogen compounds and pseudo halogens. 2. Organometallic Chemistry 7h Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. ORGANIC CHEMISTRY 30hrs (2h /w) UNIT-II Structural theory in Organic Chemistry 10 h Types of bond fis		
 Gains knowledge of importance of p-block elements & synthetic application of organo metallic compounds Understands the role of reagents and reaction mechanism, basics of stereochemistry of organic compounds Understands the role of reagents and reaction mechanism, basics of stereochemistry of organic compounds UNORGANIC CHEMISTRY 30 hrs (2h / w UNIT –I P-block elements –I I5h Group-13: Synthesis and structure of diborane and higher boranes (B₄H₁₀ and B₅H₉), Boron-nitrogen compounds (B₄N₃H₄ and BN) Group - 14: Preparation and reactions of silanes and silicones. Group - 15: Preparation and reactions of hydrazine, hydroxylamine. UNIT-II 1. p-block elements -I 8h Group - 16: Classifications of oxides based on (i) Chemical behavior and (ii) Oxygen content. Group - 16: Classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. ORGANIC CHEMISTRY 30hrs (2h /w) UNIT-III Structural theory in Organic Chemistry 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H₂O, NH₃& AlCl₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effer application to tability of carbonium ions. Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical substitution - electrophilic, Nucleophilic and free radical substitution - electrophilic, Nucleophilic and free radical substitution - electrophilic, Nucleophilic and free radical substitu		11/w)
of organo metallic compounds 2. Understands the role of reagents and reaction mechanism, basics of stereochemistry of organic compounds INORGANIC CHEMISTRY 30 hrs (2h / w UNIT –1 P-block elements –1 15h Group-13: Synthesis and structure of diborane and higher boranes (B ₄ H ₁₀ and B ₅ H ₉), Boron-nitrogen compounds (B ₅ N ₃ H ₆ and BN) Group - 14: Preparation and reactions of hydrazine, hydroxylamine. UNIT-II 1. p-block elements -1 8 bh Group - 15: Preparation and reactions of hydrazine, hydroxylamine. UNIT-II 2. Organometallic Chemistry 7h Definition - classification of organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. ORGANIC CHEMISTRY 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H ₂ O, NH ₃ & AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radic radication to tability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radicals usbitution - electrophilic, Nucleophilic and free radicals usbitution - electrophilic, Nucleophilic and free radicals usbitution - electrophilic, Nucleophilic and free radicals and its application of alkenes. Properties: Addition of hydrogena- bean of hydrogenation Mercenees. Types of Organic reactions: Addition of hydrogen - heat of hydrogenation and atbibility of alkenes. Properties: Addition of hydrogen - heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of HB		block alements & synthetic applications
 2. Understands the role of reagents and reaction mechanism, basics of stereochemistry of organic compounds INORGANIC CHEMISTRY 30 hrs (2h / w UNIT -I P-block elements -I I5h Group-13: Synthesis and structure of diborane and higher boranes (B₄H₁₀ and B₅H₉), Boron-nitrogen compounds (B₃N₃H₆ and BN) Group - 14: Preparation and applications of silanes and silicones. Group - 15: Preparation and reactions of hydrazine, hydroxylamine. UNIT-II 1. p-block elements -II 8h Group - 16: Classifications of oxides based on (i) Chemical behavior and (ii) Oxygen content. Group-17: Inter halogen compounds and pseudo halogens. 2. Organometallic Chemistry 7h Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. ORGANIC CHEMISTRY 30hrs (2h /w) UNIT-II Structural theory in Organic Chemistry 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H₂O, NH₃& AlCl₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids. (c) Stability of carbonium ions. Resonance or Mesomeric effect application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radica Substitution - electrophili	• • •	block elements & synthetic applications
stereochemistry of organic compounds INORGANIC CHEMISTRY UNIT –1 P-block elements –I Ish Group-13: Synthesis and structure of diborane and higher boranes (B ₄ H ₁₀ and B ₅ H ₉), Boron-nitrogen compounds (B ₅ N ₅ H ₆ and BN) Group - 14: Preparation and applications of silanes and silicones. Group - 15: Preparation and reactions of hydrazine, hydroxylamine. UNIT-II 1. p-block elements –I Sh Group-16: Classifications of oxides based on (i) Chemical behavior and (ii) Oxygen content. Group-17: Inter halogen compounds and pseudo halogens. 2. Organometallic Chemistry Th Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. ORGANIC CHEMISTRY 00 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H ₂ O, NH ₃ & AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effet application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radica substitution - electrophilic, Nucleophilic, and free radica substitution - electrophilic, Nucleophilic and free radica Substitution - e		reaction mechanism basics of
INORGANIC CHEMISTRY 30 hrs (2h / w UNIT -I P-block elements -I 15h Group-13: Synthesis and structure of diborane and higher boranes (B ₄ H ₁₀ and B ₅ H ₉), Boron-nitrogen compounds (B ₃ N ₃ H ₆ and BN) 15h Group - 14: Preparation and applications of silanes and silicones. Group - 15: Preparation and reactions of hydrazine, hydroxylamine. UNIT-II 8h Group - 16: Classifications of oxides based on (i) Chemical behavior and (ii) Oxygen content. 7h Organometallic Chemistry 7h Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. 30hrs (2h /w) ORGANIC CHEMISTRY 30hrs (2h /w) UNIT-II 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H ₂ O, NH ₃ & AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effet application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugati and its application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radica Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV 6h	_	
UNIT -I 15h P-block elements -I 15h Group-13: Synthesis and structure of diborane and higher boranes (B ₄ H ₁₀ and B ₃ H ₉), Boron-nitrogen compounds (B ₃ N ₃ H ₆ and BN) 15b Group - 14: Preparation and applications of silanes and silicones. Group - 15: Preparation and reactions of hydrazine, hydroxylamine. UNIT-II 8h Group - 16: Classifications of oxides based on (i) Chemical behavior and (ii) Oxygen content. 8h Group-17: Inter halogen compounds and pseudo halogens. 7h Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. 30hrs (2h /w) ORGANIC CHEMISTRY 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H ₂ O, NH ₃ & AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugatio and its application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radica Substitution - electrophilic, Nucleophilic and free radica Substitution - electrophilic, Nucleophilic and free radica	stereochennistry of organic compound	
UNIT -I 15h P-block elements -I 15h Group-13: Synthesis and structure of diborane and higher boranes (B ₄ H ₁₀ and B ₃ H ₉), Boron-nitrogen compounds (B ₃ N ₃ H ₆ and BN) 15b Group - 14: Preparation and applications of silanes and silicones. Group - 15: Preparation and reactions of hydrazine, hydroxylamine. UNIT-II 8h Group - 16: Classifications of oxides based on (i) Chemical behavior and (ii) Oxygen content. 8h Group-17: Inter halogen compounds and pseudo halogens. 7h Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. 30hrs (2h /w) ORGANIC CHEMISTRY 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H ₂ O, NH ₃ & AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugatio and its application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radica Substitution - electrophilic, Nucleophilic and free radica Substitution - electrophilic, Nucleophilic and free radica	INORGANIC CHEMISTRY	30 hrs (2h / w)
Group-13: Synthesis and structure of diborane and higher boranes (B ₄ H ₁₀ and B ₅ H ₉), Boron-nitrogen compounds (B ₃ N ₃ H ₆ and BN) Group - 14: Preparation and applications of silanes and silicones. Group - 15: Preparation and reactions of hydrazine, hydroxylamine. UNIT-II 1. p-block elements -II 8 M Group - 16: Classifications of oxides based on (i) Chemical behavior and (ii) Oxygen content. Group-17: Inter halogen compounds and pseudo halogens. 2. Organometallic Chemistry 7h Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. ORGANIC CHEMISTRY 0 MIT-III Structural theory in Organic Chemistry 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H ₂ O, NH ₃ & AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effet application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV 1. Acyclic Hydrocarbons 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenatio and stability of alkenes. Addition of halogen and its mechanism. Addition of HE Markonikov's rule, addition of H ₂ O, HOX, H ₂ SO ₄ with mechanism and addition of HE		
Boron-nitrogen compounds (B ₃ N ₃ H ₆ and BN) Group - 14: Preparation and applications of silanes and silicones. Group - 15: Preparation and reactions of hydrazine, hydroxylamine. UNIT-II 1. p-block elements -II 8h Group - 16: Classifications of oxides based on (i) Chemical behavior and (ii) Oxygen content. 7h Group-17: Inter halogen compounds and pseudo halogens. 7h 2. Organometallic Chemistry 7h Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. 30hrs (2h /w) ORGANIC CHEMISTRY 30hrs (2h /w) UNIT-III Structural theory in Organic Chemistry 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H ₂ O, NH ₃ & AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugatio and its application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical Substitution - electrophi		15h
Group - 14: Preparation and applications of silanes and silicones. Group - 15: Preparation and reactions of hydrazine, hydroxylamine. UNIT-II 1. p-block elements -II 8. B Group - 16: Classifications of oxides based on (i) Chemical behavior and (ii) Oxygen content. Group-17: Inter halogen compounds and pseudo halogens. 2. Organometallic Chemistry 7h Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. ORGANIC CHEMISTRY 9. ORGANIC CHEMISTRY 10 h Types of bond fission and organic Chemistry 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H ₂ O, NH ₃ & AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi - inductive effect. Application of carbonium ions. Resonance or Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugatio and its application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV 1. Acyclic Hydrocarbons 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenatio and stability of alkenes. Addition of halogen and its mechanism. Addition of Hz Markonikov's rule, addition of H ₂ O, HOX, H ₂ SO ₄ with mechanism and addition of HBr	· ·	e
Group - 15: Preparation and reactions of hydrazine, hydroxylamine. UNIT-II 1. p-block elements -II 8 M Group - 16: Classifications of oxides based on (i) Chemical behavior and (ii) Oxygen content. Group-17: Inter halogen compounds and pseudo halogens. 2. Organometallic Chemistry 7 M Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. ORGANIC CHEMISTRY 9 M UNIT-III Structural theory in Organic Chemistry 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H ₂ O, NH ₃ & AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effer application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV 1. Acyclic Hydrocarbons 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of HE Markonikov's rule, addition of H ₂ O, HOX, H ₂ SO ₄ with mechanism and addition of HBr	č 1	
UNIT-II 1. p-block elements -II 8h Group - 16: Classifications of oxides based on (i) Chemical behavior and (ii) Oxygen content. Group-17: Inter halogen compounds and pseudo halogens. 2. Organometallic Chemistry 7h Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. 30hrs (2h /w) ORGANIC CHEMISTRY 30hrs (2h /w) UNIT-III 30hrs (2h /w) Structural theory in Organic Chemistry 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radice reagents including neutral molecules like H ₂ O, NH ₃ & AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effet application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugatio and its application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radice. UNIT-IV 6h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenatio and stability of alkenes. Addition of halogen and its mechanism and addition of Hz		
 Group - 16: Classifications of oxides based on (i) Chemical behavior and (ii) Oxygen content. Group-17: Inter halogen compounds and pseudo halogens. 2. Organometallic Chemistry 7h Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. ORGANIC CHEMISTRY 30hrs (2h /w) UNIT-III Structural theory in Organic Chemistry 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H₂O, NH₃& AlCl₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV 1. Acyclic Hydrocarbons 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenatic and stability of alkenes. Addition of halogen and its mechanism. Addition of HE 		
content. Group-17: Inter halogen compounds and pseudo halogens. 2. Organometallic Chemistry 7h Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. 30hrs (2h /w) ORGANIC CHEMISTRY 30hrs (2h /w) UNIT-III 30hrs (2h /w) Structural theory in Organic Chemistry 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radice reagents including neutral molecules like H ₂ O, NH ₃ & AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativic - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical Substitution - e	1. p-block elements -II	8h
Group-17: Inter halogen compounds and pseudo halogens. 2. Organometallic Chemistry 7h Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. 30hrs (2h /w) ORGANIC CHEMISTRY 30hrs (2h /w) UNIT-III 30hrs (2h /w) Structural theory in Organic Chemistry 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radice reagents including neutral molecules like H ₂ O, NH ₃ & AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativic - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes, carbanion carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenatio and stability of alkenes. Addition of halogen and its mechanism. Addition of Hz	Group - 16: Classifications of oxides based on	(i) Chemical behavior and (ii) Oxygen
2. Organometallic Chemistry 7h Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. 30hrs (2h /w) ORGANIC CHEMISTRY 30hrs (2h /w) UNIT-III 30hrs (2h /w) Structural theory in Organic Chemistry 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radice reagents including neutral molecules like H2O, NH3& AlCl3). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativities - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV 1. Acyclic Hydrocarbons 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of H2 Markonikov's rule, addition of H2O, HOX, H2SO4 with mechanism and addition of H2F	content.	
Definition - classification of Organometallic compounds - nomenclature, preparation and applications of alkyls of Li and Mg. ORGANIC CHEMISTRY 30hrs (2h /w) UNIT-III Structural theory in Organic Chemistry 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H ₂ O, NH ₃ & AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV 1. Acyclic Hydrocarbons 6h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of Hz Markonikov's rule, addition of H ₂ O, HOX, H ₂ SO ₄ with mechanism and addition of HBr	Group-17: Inter halogen compounds and pseudo	o halogens.
and applications of alkyls of Li and Mg.30hrs (2h /w)ORGANIC CHEMISTRY30hrs (2h /w)UNIT-III30hrs (2h /w)Structural theory in Organic Chemistry10 hTypes of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H_2O , $NH_3\&$ AlCl_3).Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes.Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples.UNIT-IV 1. Acyclic Hydrocarbons6 hAlkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of Hz		
ORGANIC CHEMISTRY 30hrs (2h /w) UNIT-III Structural theory in Organic Chemistry 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H_2O , $NH_3\&$ AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugatio and its application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenatic and stability of alkenes. Addition of halogen and its mechanism. Addition of Hz	-	compounds - nomenclature, preparation
UNIT-III 10 h Structural theory in Organic Chemistry 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H_2O , NH_3 & AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativity - - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes, carbanion carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. Oh UNIT-IV 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenation 6 h Alkenes - Preparation of alkenes. Addition of halogen and its mechanism. Addition of Hz Markonikov's rule, addition of H_2O , HOX, H_2SO_4 with mechanism and addition of Hz		
Structural theory in Organic Chemistry 10 h Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H ₂ O, NH ₃ & AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugatio and its application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV 1. Acyclic Hydrocarbons 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenatic and stability of alkenes. Addition of halogen and its mechanism. Addition of HZ		30hrs (2h/w)
Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radic reagents including neutral molecules like H_2O , NH_3 & AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugatio and its application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV 1. Acyclic Hydrocarbons 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenatio and stability of alkenes. Addition of halogen and its mechanism. Addition of Hz Markonikov's rule, addition of H ₂ O, HOX, H ₂ SO ₄ with mechanism and addition of HBr		101
reagents including neutral molecules like H_2O , $NH_3\&$ AlCl ₃). Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi- - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes, carbanion carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV 1. Acyclic Hydrocarbons 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenatic and stability of alkenes. Addition of halogen and its mechanism. Addition of Hz Markonikov's rule, addition of H ₂ O, HOX, H ₂ SO ₄ with mechanism and addition of HBr		
Bond polarization: Factors influencing the polarization of covalent bonds, electro negativi - inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes, carbanion carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV 1. Acyclic Hydrocarbons 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenatic and stability of alkenes. Addition of halogen and its mechanism. Addition of Hz Markonikov's rule, addition of H ₂ O, HOX, H ₂ SO ₄ with mechanism and addition of HBr		
 inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes, carbanion carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV Acyclic Hydrocarbons Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenatic and stability of alkenes. Addition of halogen and its mechanism. Addition of Hz Markonikov's rule, addition of H₂O, HOX, H₂SO₄ with mechanism and addition of HBr 	C	
carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effect application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes, carbanion carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV 1. Acyclic Hydrocarbons 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenatic and stability of alkenes. Addition of halogen and its mechanism. Addition of HZ Markonikov's rule, addition of H ₂ O, HOX, H ₂ SO ₄ with mechanism and addition of HBr		
and its application to stability of carbonium ions, Free radicals and alkenes, carbanior carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV 1. Acyclic Hydrocarbons 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of HBr Markonikov's rule, addition of H ₂ O, HOX, H ₂ SO ₄ with mechanism and addition of HBr	**	• • •
carbenes and nitrenes. Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV 1. Acyclic Hydrocarbons 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of H2 Markonikov's rule, addition of H2O, HOX, H2SO4 with mechanism and addition of HBr	application to (a) acidity of phenol, and (b) aci	dity of carboxylic acids. Hyper conjugation
Types of Organic reactions: Addition - electrophilic, nucleophilic and free radical Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV 1. Acyclic Hydrocarbons 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of HBr Markonikov's rule, addition of H ₂ O, HOX, H ₂ SO ₄ with mechanism and addition of HBr	and its application to stability of carbonium i	ons, Free radicals and alkenes, carbanions
Substitution - electrophilic, Nucleophilic and free radical. Elimination- Examples. UNIT-IV 1. Acyclic Hydrocarbons 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenatic and stability of alkenes. Addition of halogen and its mechanism. Addition of H2 Markonikov's rule, addition of H2O, HOX, H2SO4 with mechanism and addition of HBr		
UNIT-IV 1. Acyclic Hydrocarbons 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of HZ Markonikov's rule, addition of H2O, HOX, H2SO4 with mechanism and addition of HBr		
1. Acyclic Hydrocarbons 6 h Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of Hz Markonikov's rule, addition of H2O, HOX, H2SO4 with mechanism and addition of HBr		ee radical. Elimination- Examples.
Alkenes - Preparation of alkenes. Properties: Addition of hydrogen - heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of HZ Markonikov's rule, addition of H2O, HOX, H_2SO_4 with mechanism and addition of HBr		6 h
and stability of alkenes. Addition of halogen and its mechanism. Addition of H2 Markonikov's rule, addition of H2O, HOX, H_2SO_4 with mechanism and addition of HBr		
Markonikov's rule, addition of H_2O , HOX, H_2SO_4 with mechanism and addition of HBr		
	- · ·	· · · · · ·

 of conjugated dienes - 1,2 and 1,4 addition of HBr to 1,3 - butadiene and Diel's - Alder reaction. Alkynes - Preparation by dehydrohalogenation of dihalides, dehalogenation of tetrahalides, Properties; Acidity of acetylenic hydrogen (formation of Metal acetylides). Preparation of higher acetylenes, Metal ammonia reductions, Physical properties. Chemical reactivity - electrophilic addition of X₂, HX, H₂O (Tautomerism), Oxidation with KMnO₄, OsO₄, reduction and Polymerisation reaction of acetylene. Alicyclic hydrocarbons (Cycloalkanes) Alicyclopropane and cyclobutane by comparing with alkanes, Stability of cycloalkanes - Baeyer's strain theory, Sachse and Mohr predictions and Pitzer's strain theory. Conformational structures of cyclobutane, cyclopentane, cyclohexane. UNIT-V Benzene and its reactivity Concept of resonance, resonance energy. Heat of hydrogenation, heat of combustion of Benzene, mention of C-C bond lengths and orbital picture of Benzene. Concept of aromaticity definition), Huckel's rule - application to Benzenoid (Benzene, Naphthalene) and Non - Benzenoid compounds (cyclopropenyl cation, cyclopentadienyl anion and tropylium cation) Reactions - General mechanism of electrophilic substitution, mechanism of nitration, Friedel Craft's alkylation and acylation. Orientation of aromatic substitution - Definition of ortho, para and meta directing groups. Ring activating and deactivating groups with examples (Electronic interpretation dy arous groups like NO₂ and Phenolic). Orientation of (1) Amino, methoxy and methyl groups (ii) Carboxy, nitro, nitrile, carbonyl and subhonic acid errows (iii) Haldeenes (Explanation by kiking minimum of one example from
 Alkynes - Preparation by dehydrohalogenation of dihalides, dehalogenation of tetrahalides, Properties; Acidity of acetylenic hydrogen (formation of Metal acetylides). Preparation of higher acetylenes, Metal ammonia reductions, Physical properties. Chemical reactivity - electrophilic addition of X₂, HX, H₂O (Tautomerism), Oxidation with KMnO₄, OsO₄, reduction and Polymerisation reaction of acetylene. Alicyclic hydrocarbons (Cycloalkanes) A h Nomenclature, Preparation by Freunds method, Wislicenus method. Properties - reactivity of cyclopropane and cyclobutane by comparing with alkanes, Stability of cycloalkanes - Baeyer's strain theory, Sachse and Mohr predictions and Pitzer's strain theory. Conformational structures of cyclobutane, cyclopentane, cyclohexane. UNIT-V Benzene and its reactivity Concept of resonance, resonance energy. Heat of hydrogenation, heat of combustion of Benzene, mention of C-C bond lengths and orbital picture of Benzene. Concept of
2. Alicyclic hydrocarbons (Cycloalkanes)4 hNomenclature, Preparation by Freunds method, Wislicenus method. Properties - reactivity of cyclopropane and cyclobutane by comparing with alkanes, Stability of cycloalkanes - Baeyer's strain theory, Sachse and Mohr predictions and Pitzer's strain theory. Conformational structures of cyclobutane, cyclopentane, cyclohexane.***UNIT-V**Benzene and its reactivity10h**Concept of resonance, resonance energy. Heat of hydrogenation, heat of combustion of Benzene, mention of C-C bond lengths and orbital picture of Benzene. Concept of
** UNIT-V * ** Benzene and its reactivity 10h ** Concept of resonance, resonance energy. Heat of hydrogenation, heat of combustion of Benzene, mention of C-C bond lengths and orbital picture of Benzene. Concept of *
Benzene and its reactivity 10h Concept of resonance, resonance energy. Heat of hydrogenation, heat of combustion of Benzene, mention of C-C bond lengths and orbital picture of Benzene. Concept of
** aromaticity - aromaticity (definition), Huckel's rule - application to Benzenoid (Benzene, ** Naphthalene) and Non - Benzenoid compounds (cyclopropenyl cation, cyclopentadienyl anion and tropylium cation)
★ List of Reference Books
1. Inorganic Chemistry by J.E.Huheey
2. Basic Inorganic Chemistry by Cotton and Wilkinson
3.A textbook of qualitative inorganic analysis by A.I. Vogel4. Organic Chemistry by Morrisson and Boyd
 4. Organic Chemistry by Monisson and Boyd 5. A Text Book of Organic chemistry by I L Finar Vol I
6. Concise Inorganic Chemistry by J.D.Lee
※ ※
※ ※
** each type) ** List of Reference Books ** 1. Inorganic Chemistry by J.E.Huheey ** 2. Basic Inorganic Chemistry by Cotton and Wilkinson ** 3.A textbook of qualitative inorganic analysis by A.I. Vogel ** 4. Organic Chemistry by Morrisson and Boyd ** 5. A Text Book of Organic chemistry by I L Finar Vol I ** 6. Concise Inorganic Chemistry by J.D.Lee ** * </td
* *************************************

			Model paper Semester-I				
		Paper-I-In	organic & organic o	chemistry			
	Time 3 hours	•	Maxmarks-70				
			-A (Inorganic chem	•			
	nswer any two question			2x10=20			
	vo questions are to be served on the served of the served provides and the served of t						
1 V	vo questions are to be se		n-B (Organic chemi	(strv)			
		Beeno		(3 (1))			
Aı	nswer any two question	S		2x10=20			
	ne question is to be set fr						
	vo questions are to be set						
Or	ne question is to be set fr	om unit-V					
		Sec	tion-C				
Aı	nswer any five question	s out of eight		5x4=20			
	vo questions are to be set						
	vo questions are to be set						
	ne question is to be set fr						
	vo questions are to be set ne question is to be set fr						
01	le question is to be set if						
		Sec	tion-D				
	nswer any five question	0		5x2=10			
	ne question is to be set fr ne question is to be set fr						
	ne question is to be set fr						
	ne question is to be set fr						
Or	ne question is to be set fr	om unit-V					
		Woighton	e to content				
			ster-I				
CLN	<u> </u>	F (10)		V CL (2			
Sl.No	Content Inorganic chemistry	Essay(10m)	Short answer(4m)	Very Short answer (2m			
1	Unit-I	2	2	1			
2	Unit-II	2	2	1			
	Organic chemistry						
3	Unit-III	1	1	1			
4	Unit-IV	2	2	1			
5	Unit-V	1	1	1			
	Total	8	8	5			

	LABORATORY COURSE-I30 hrs (2 h / w)Practical-I Simple Salt Analysis(At the end of Semester-I) Max marks-50
-	ive inorganic analysis of simple salt containing one anion and cation from the following
Anions:	Carbonate, sulphate, chloride, bromide, acetate, nitrate, borate phosphate.
Cations:	Lead, copper, iron, aluminum, zinc, manganese, nickel, calcium strontium, barium, potassium and ammonium.
Preparatio	on of inorganic compounds:
	reparation of pure sample of Ferrous ammonium sulphate (Mohr's salt) FeSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O]
2. Pi	reparation of pure sample of potash alum $[K_2SO_4.Al_2 (SO_4)_3.24H_2O]$ reparation of pure sample of Tetrammine copper (II) sulphate

SC		OF VALUATION FOR I SEMEST	ER	
Max. Marks: 50	CIIEMI	SIKI LADORATORI COURSE	J	Fime: 2 hrs
For Record -	10 Marks			
For Viva-Voce -	5 Marks			
For Practical - 3	5 Marks			
Splitting of Practical				
I C	S.No.	Description	Marks	<u> </u>
	1.	Colour	02	<u> </u>
	2.	State	02	
	3.	Odour	02	
	4.	Solubility	03	
	5.	Flame Test	03	
	6.	Action of Heat	03	
	7.	Marks for Anion:	02	
		Dry test with acid Confirmation test with SCE	03 03	
		Reporting of Anion	03	
	8.	Preparation of SCE	04	
	9.	For Carbonate:		
		Test with acid	03	
		Confirmation test with BaCl ₂	03	
	10.	For Borate:		
		Borontrifluoride test	03	
	11.	Ethylborate test For Sulphate:	03	
	11.	Confirmation test with SCE	03	
		Solubility of the formed	03	
		precipitate	02	
	12.	Marks for Cation:		
		Identification of cation in correct	01	
		group	01	
		Colour of the precipitate	01	
		Mentioning of the group reagents Confirmation test for the cation	03	
		Reporting of Cation	02	
	13.	For Ammonium:		
	10.	Test with NaOH	03	
		Confirmation test	03	
				-

FIRST YEAR 2017-18 SEMESTER - II Paper II (Physical & General Chemistry) 60 hrs. (4h/w)

PHYSICAL CHEMISTRY

30 hrs (2h / w)

l0h

6 h

OBJECTIVES: .1. COMPARES THE VB THEORY AND MOLECULAR ORBITAL THEORY 2. UNDERSTANDS THE PRINCIPLES INVOLVED IN TITRIMETRIC AND GRAVIMETRIC ANALYSIS

3. ABLE TO APPRECIATE THE APPLICATIONS OF COLLOIDS AND **ADSORPTION**

Symmetry in crystals. Law of constancy of interfacial angles. The law of rationality of indices. The law of symmetry. Definition of lattice point, space lattice, unit cell. Bravis lattices and crystal systems. X-ray diffraction and crystal structure. Bragg's law. Defects in crystals. Stoichiometric and non-stoichiometric defects.

Compression factors, deviation of real gases from ideal behavior. Vander Waal's equation of state. P-V Isotherms of real gases, Andrew's isotherms of carbon dioxide, continuity of state. Critical phenomena. The vander Waal's equation and the critical state. Law of corresponding states. Relationship between critical constants and vander Waal's constants. Joule Thomson effect.

Structural differences between solids, liquids and gases. Liquid crystals, the mesomorphic state. Classification of liquid crystals into Smectic and Nematic. Differences between liquid crystal and solid/liquid. Application of liquid crystals as LCD devices.

Liquid-liquid - ideal solutions, Raoult's law. Ideally dilute solutions, Henry's law. Nonideal solutions. Vapour pressure - composition and vapour pressure- temperature curves. Azeotropes-HCl-H₂O, ethanol-water systems and fractional distillation. Partially miscible liquids-phenol-water, trimethylamine-water, nicotine-water systems. Effect of impurity on consulate temperature. Immiscible liquids and steam distillation.

Nernst distribution law. Calculation of the partition coefficient. Applications of distribution

GENERAL CHEMISTRY

l.Surface chemistry

Definition of colloids. Solids in liquids(sols), preparation, purification, properties - kinetic, optical, electrical. Stability of colloids, Hardy-Schulze law, protective colloid. Liquids in liquids (emulsions) preparation, properties, uses. Liquids in solids (gels)

10h

4 h

30 hrs (2h / w)

8 h

米 **** **** ✵ 尜 ** ****

尜 尜 尜 ****

米

✵

✵

Adsorption: Physical adsorption, chemisorption. Fisotherms. Applications of adsorption	Freundlisch, Langmuir adsorption
 2. Chemical Bonding Valence bond theory, hybridization, VB theory as ap orbital theory - LCAO method, construction of M.G hetero-nuclear diatomic molecules (N₂, O₂, CO and NO 	D. diagrams for homo-nuclear and
UNIT-V Stereochemistry of carbon compounds Molecular representations- Wedge, Fischer, Newman isomerism: Optical activity- wave nature of light, plane specific rotation. Chiral molecules- definition and crite of enantiomers and diastereomers – Explanation of Glyceraldehyde, Lactic acid, Alanine, Tartaric acid, configuration methods and E.Z. configuration with energy	e polarised light, optical rotation and ria(Symmetry elements)- Definition optical isomerism with examples 2,3-dibromopentane. D,L and R,S
 configuration methods and E,Z- configuration with exa List of Reference Books 1. Principles of physical chemistry by Prutton and Ma 	-
 Solid State Chemistry and its applications by Anthor 	
3. Text book of physical chemistry by K L Kapoor	-
4. Text book of physical chemistry by S Glasstone	
 Stereochemistry of Organic compounds by E L Eliel 	
6. Advanced Organic Chemistry by F A Carey and R J S	
7. Stereochemistry by P.S.Kalsi	-
8. Stereochemistry of Organic compounds by D. Nasipu	ıri
9. Advanced physical chemistry by Bahl and Tuli	
10. Advanced Inorganic Chemistry Vol-I by Satyapraka	ish, Tuli, Basu and Madan

LABORATORY COURSE -II				
		Practical-II Analysis of Mixture Sa	alt	
		(At the end of Semester-II) 30 hrs (2 h	n / w) Maxi	mum marks-50
Qualitative in	organi	c analysis		
•		containing two anions and two cations (From two	different groups
from the following	ng:			
Anions: Carbona	ate, sulph	ate, chloride, bromide, acetate, nitrate,	borate, pho	osphate.
		iron, aluminum, zinc, manganese, ca ammonium.	alcium, str	ontium, barium
	SCH	HEME OF VALUATION FOR II SEME	STER	
		CHEMISTRY LABORATORY COURS	E	
Max. Marks: 5	0			Time: 3 hrs
For Record	- 10	Marks		
For Viva-voce		Narks		
For Practical		Marks		
Splitting of Pra				
Spinning of I la	S.No.	Description	Marks	
	1.	Colour	01	
	2.	State	01	
	3.	Odour	01	
	4.	Solubility	02	
	5.	Flame Test	02	
	<u>6.</u> 7.	Action of Heat Marks for each Anion: 06 Marks	02	
	1.	Dry test with acid	02	
		Confirmation test with SCE	03	
		Reporting of Anion	01	
	8.	Preparation of SCE	02	
	9.	For Carbonate:	02	
		Test with acid Confirmation test with BaCl ₂	02 03	
	10.	For Borate:	0.5	
		Borontrifluoride test	02	
		Ethylborate test	03	
	11.	For Sulphate:	62	
		Conformation test with SCE	03	
	12.	Solubility of the formed precipitate Marks for each Cation: 06 Marks	02	
	12.	Identification of cation in correct	01	
		group	01	
		Colour of the precipitate	01	
		Mentioning of the group reagents	02	
		Confirmation test for the cation Reporting of Cation	01	
		Reporting of Cation For Ammonium:		
		Test with NaOH	02	
		Confirmation test	03	

	************	*****	•			
デ	CECOND VEAD 2017 19		デ			
ネ	SECOND YEAR 2017-18 SEMESTER – III					
*	Paper III (INORGANIC & ORGANIC CHEMISTRY) 60 hrs (4 h / w)					
米	INORGANIC CHEMISTRY	30 hrs (2h / w)	※			
ボ	OBJECTIVES;		ボ			
*	1. Understands the reason for characteristic properties of dand f-		米			
****************	2. Appreciates the application of m.o. theory to conductors, none Semiconductors	conductors and	**************			
米	3. Gains knowledge of properties of hetero compounds with med	chanism	米			
米	4. Able to apply principles of anion synthesis		米			
*	UNIT –I 1. Chemistry of d-block elements:	9h	米			
<u>×</u>	Characteristics of d-block elements with special refere		<u></u>			
	configuration, variable valence, magnetic properties, catalytic p		イン			
彩	to form complexes. Stability of various oxidation states	soperites and admity	彩			
*	2. Theories of bonding in metals:	6h	米			
米	Metallic properties and its limitations, Valence bond theory, I		米			
*	Explanation of thermal and electrical conductivity of metals, limi	•	*			
	formation of bands, explanation of conductors, semiconductors and in	sulators.				
ネ	UNIT – II		ボ			
米	3. Metal carbonyls :	7h	米			
*	EAN rule, classification of metal carbonyls, structures an	d shapes of metal	米			
*	carbonyls of V, Cr, Mn, Fe, Co and Ni.		*			
×	4. Chemistry of f-block elements:	8h				
	Chemistry of lanthanides - electronic structure, oxidation states, la consequences of lanthanide contraction, magnetic properties. Che					
	electronic configuration, oxidation states, actinide contraction, comp	•	米			
*	and actinides.		米			
*	ORGANIC CHEMISTRY	30h (2h/w)	米			
*	UNIT – III		*			
	1. Halogen compounds	5 h				
が	Nomenclature and classification of alkyl (into primary, secondary, ter		デ			
米	allyl, vinyl, benzyl halides. Nucleophilic aliphatic substitution re		米			
米	$intoSN^1$ and SN^2 – reaction mechanism with examples – Ethyl chlorid	oride, t-butyl chloride	米			
米	and optically active alkyl halide 2-bromobutane.2. Hydroxy compounds	5 h	米			
<u>×</u>	Nomenclature and classification of hydroxy compounds.	511	×			
	Alcohols: Preparation with hydroboration reaction, Grignard synthesis	s of alcohols. Phenols:				
ボ	Preparation i) from diazonium salt, ii) from aryl sulphonates, iii) fr		ボ			
*	properties- Hydrogen bonding (intermolecular and intramolecular)	. Effect of hydrogen	米			
*	bonding on boiling point and solubility in water.		米			
*	Identification of alcohols by oxidation with KMnO ₄ , Ceric ammo		*			
×	reagent and phenols by reaction with FeCl ₃ . Chemical properties alcohols. b) Oxidation of alcohols by CrO ₃ , KMnO ₄ . c) Special		<u>>k</u>			
	Bromination, Kolbe-Schmidt reaction, Riemer-Tiemann reaction,	-	デ			
ボ	azocoupling, Pinacol-Pinacolone rearrangement.	······································	彩			
***********	-		***********			
*			米			
•	*****	*****	***			

>	**	***
*****************	UNIT-IV	****************
*	Carbonyl compounds 10 h	*
<u>></u> k	Nomenclature of aliphatic and aromatic carbonyl compounds, structure of the carbonyl	ネ 上
	group. Synthesis of aldehydes from acid chlorides, synthesis of aldehydes and ketones	
ボ	using 1,3-dithianes, synthesis of ketones from nitriles and from carboxylic acids. Physical properties: Reactivity of carbonyl group in aldehydes and ketones.	ボ
✷	Nucleophilic addition reaction with a) NaHSO ₃ , b) HCN, c) RMgX, d) NH_2OH ,	*
*	e)PhNHNH ₂ , f) 2,4 DNPH, g) Alcohols-formation of hemiacetal and acetal. Base catalysed	*
*	reactions: a) Aldol, b) Cannizzaro's reaction, c) Perkin reaction, d) Benzoin condensation,	*
<u></u>	e) Haloform reaction, f) Knoevenagel reaction. Oxidation of aldehydes- Baeyer-Villiger	*
	oxidation of ketones.Reduction: Clemmensen reduction, Wolf-Kishner reduction, MPV	
が	reduction, reduction with LiAlH ₄ and NaBH ₄ . Analysis of aldehydes and ketones with a) 2,4-DNPH test, b) Tollen's test, c) Fehling test, d) Schiff's test e) Haloform test (with	ボ
⅔	equation)	*
*	UNIT-V	米
*	1. Carboxylic acids and derivatives6 h	*
<u>×</u>	Nomenclature, classification and structure of carboxylic acids. Methods of preparation by	<u>×</u>
	a) Hydrolysis of nitriles, amides b) Hydrolysis of esters by acids and bases with mechanism	
が	c) Carbonation of Grignard reagents. Special methods of preparation of aromatic acids by	ボ
✷	a) Oxidation of side chain. b) Hydrolysis by benzotrichlorides.c) Kolbe reaction.Physical properties: Hydrogen bonding, dimeric association, acidity- strength of acids	米
*	with examples of trimethyl acetic acid and trichloroacetic acid. Relative differences in the	米
*	acidities of aromatic and aliphatic acids. Chemical properties: Reactions involving H, OH	*
<u>></u>	and COOH groups- salt formation, anhydride formation, acid chloride formation, amide	*
	formation and esterification (mechanism). Degradation of carboxylic acids by Huns-	
デ	Diecker reaction, decarboxylation by Schimdt reaction, Arndt-Eistert synthesis, halogenation by Hell- Volhard- Zelinsky reaction.	が
	2. Active methylene compounds4h	
*	Acetoacetic ester: keto-enol tautomerism, preparation by Claisen condensation, Acid hydrolysis and	米
*	ketonic hydrolysis. Preparation of a) monocarboxylic acids.b) Dicarboxylic acids. c)Reaction with urea	米
*	Malonic ester: preparation from acetic acid. Synthetic applications: Preparation of a)	*
<u>>k</u>	monocarboxylic acids (propionic acid and n-butyric acid). b) Dicarboxylic acids	×
	(succinic acid and adipic acid) c) α , β -unsaturated carboxylic acids (crotonic acid). d) Reaction with urea.	
ネ	List of Reference Books	苶
⅔	1. Selected topics in inorganic chemistry by W.D.Malik, GD.Tuli, R.D.Madan	*
*	2. Inorganic Chemistry J E Huheey, E A Keiter and R L Keiter	米
*	3. A Text Book of Organic Chemistry by Bahl and Arun bahl	*
<u>></u> /<	4. A Text Book of Organic chemistry by I L Finar Vol I	*
	5. Organic chemistry by Bruice	
「「	 Organic chemistry by Clayden Advanced Inorganic chemistry by Curudeen Pai 	が
彩	 7. Advanced Inorganic chemistry by Gurudeep Raj 8. Basic Inorganic Chemistry by Cotton and Wilkinson 	*
*	 Basic morganic Chemistry by Cotton and Wirkinson Concise Inorganic Chemistry by J.D.Lee 	米
米	2. Concise morganic chemistry by 0.2.200	*
***********		************
が		ボ
***	********************	***

	LABORATORY COUR	SE -III	30 hrs. (2 h / w)
Practi			nic Functional Group Reaction
	(At th	ne end of Semester-	111)
Titrime	tric analysis:		23M
1. Detern	nination of Fe (II) using KM	nO ₄ with oxalic aci	d as primary standard.
2. Detern	nination of Cu (II) using Na_2	S ₂ O ₃ with K ₂ Cr ₂ O ₇	as primary standard.
Organic	Functional Group Reaction	ns	12M
3. Reaction	ons of the following functior	nal groups present in	n organic compounds
(at leas	st four) Alcohols, Phenols, A	Aldehydes, Ketones	, Carboxylic acids and Amides
		ALUATION FOR II ALUATION FOR II	
		METRIC ANALYS CTIONAL GROUP	
Max. N	Marks: 50		
Time: 3			
For Reco	ord - 10 Marks		
For Viva	a-voce - 5 Marks		
For Prac	tical - 35 Marks		
	g of Practical Marks for tit	•	
i)	Preparation of standard		: 5 Marks
ii) iii)	Standardization of inter		
111)	Determination of the gi	Error $< 1\%$: 10 Marks : 10 Marks
		Error 1-1.5 %	: 8 Marks
		Error $> 2\%$: 5 Marks (Minimum Marks)
iv)	Correct calculation		: 3 marks
Splittin	ng of Practical Marks for C	Organic functional	group reactions:
Any FO	UR reactions of the given fu	nctional group: 4	x 3 =12 Marks

SEMESTER IY Paper IV (SPECTROSCOPY & PHYSICAL CHEMISTRY) 60 hrs (4 h / w) DIECTIVES 1. Understands heterogenious equilibria and the application of phase rule 2. Gains knowledge of principles of electrolysis and galvanic cells 3. Understands the applications of spectrophotometry and spectroscopic interpretations. ECTROSCOPY and the applications of spectrophotometry and spectroscopic interpretations. ECTROSCOPY and the application of colligative properties in the determination of molecular weight 0. Understands the applications of spectrophotometry and spectroscopic interpretations. ECTROSCOPY and the application of spectrophotometry and spectroscopic interpretations. ECTROSCOPY and the absorptivity. Single and double beam spectrophotometres. Application of Beer-Lambert law for quantitative analysis of 1. Chromium in K ₂ Cr ₂ O ₇ 2. Marganese in Marganous sulpate ENTROSCOPY and Interaction of electromagnetic radiation with molecules and types of molecular spectra. Energy levels of molecular orbitals (c, r, n). Selection rules for electronic spectra. Types of electronic transitions in molecules effect of conjugation. Concept of chromophore and aux.chrome. UNIT-II Infar defined Spectroscopy and the solution back of various functional dispose. Interpretation of spectra-Alkanes. Aromatic, Alcohols carbonyls, and amines with one example to each. Energy levels of molecular shift, NMR splitting of signals - spin-spin coupling, coupling orstants. Applications of NMR with suitable examples - ethyl bromide, ethanol, actalethyde, 1,2-tribromo ethane, ethyl acetaet, toluen and accopherum. Microlet Mergenties Romace, equivalent and non-equivalent protections of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling onstants. Applications of NMR with suitable examples - ethyl bromide, ethanol actalethyde, 1,2-tribromo ethane, ethyl acetaet, toluen and acceptenceu. Entropy in and eperssion in freezing point. Experimental methods of determination. Omossis, optical me			
60 hrs (4 h / w) OBJECTIVES: 1. Understands heterogenious equilibria and the application of phase rule Classins knowledge of principles of electrolysis and galvanic cells 0. Understands the application of colligative properties in the determination of molecular weight 1. Understands the applications of spectrophotometry and spectroscopic interpretations PECTROSCOPY On the Chart of Chart of Chart of the Chart of		SEMESTER IV	
OBJECTIVES: 1. Understands heterogenious equilibria and the application of phase rule 2. Gains knowledge of principles of electrolysis and galvanic cells 3. Under stands the application of colligative properties in the determination of molecular weight 4. Understands the applications of spectrophotometry and spectroscopic interpretations. SPECTROSCOPY 30 hrs (2h / w) MIT-1 6h General features of absorption - Beer-Lambert's law and its limitations, transmittance, Absorbance, and molar absorptivity. Single and double beam spectrophotometers. Application of Beer-Lambert law for quantitative analysis of 1. Chromium in K ₂ Cr ₂ O ₇ 2. Manganese in Manganous sulphate Electronic spectroscopy: 8h Interaction of electromagnetic radiation with molecules and types of molecular spectra. Energy levels of molecular orbitals (σ, π, n). Selection rules for electronic spectra. Types of electronic transitions in molecules effect of conjugation. Concept of chromophore and auxochrome. UNTI-1I Mra red spectroscopy 8h Different Regions in Infrared radiations. Modes of vibrations in diatomic and polyatomic molecules. Characteristic absorption bands of various functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each. Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants, Applications of NMR with suitable examples - ethyl bromide, ethanol,		Paper IV (SPECTROSCOPY & PHYSICAL	CHEMISTRY)
 1. Understands heterogenious equilibria and the application of phase rule 2. Gains knowledge of principles of electrolysis and galvanic cells 3. Under stands the application of colligative properties in the determination of molecular weight 4. Understands the applications of spectrophotometry and spectroscopic interpretations. SPECTROSCOPY 30 hrs (2h / w) MIT-I 6h General features of absorption - Beer-Lambert's law and its limitations, transmittance, Absorbance, and molar absorptivity. Single and double beam spectrophotometers. Application of Beer-Lambert law for quantitative analysis of 1. Chromium in K₂Cr₂O₇ 2. Manganese in Manganous sulphate Electronic spectroscopy: 8h Interaction of electromagnetic radiation with molecules and types of molecular spectra. Types of electronic transitions in molecules effect of conjugation. Concept of chromophore and auxochrome. UNTI-II Infra red spectroscopy 8h Different Regions in Infrared radiations. Modes of vibrations in diatomic and polyatomic molecules. Characteristic absorption bands of various functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each. Proton magnetic resonance spectroscopy (¹H-NMR) 8h Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, tolucne and accophenoue. PHYSICAL CHEMISTEX 10h Dilut solutions 0 fMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, tolucne and accophenoue. 		60 hrs (4 h / w)	
 2. Gains knowledge of principles of electrolysis and galvanic cells 3. Under stands the application of colligative properties in the determination of molecular weight 4. Understands the applications of spectrophotometry and spectroscopic interpretations. SPECTROSCOPY 30 hrs (2h / w) MTT-I 6h General features of absorption - Beer-Lambert's law and its limitations, transmittance, Absorbance, and molar absorptivity. Single and double beam spectrophotometers. Application of Beer-Lambert law for quantitative analysis of 1. Chromium in K₂Cr₂O₇ 2. Manganese in Manganous sulphate Electronic spectroscopy: 8h Interaction of electromagnetic radiation with molecules and types of molecular spectra. Types of electronic transitions in molecules effect of conjugation. Concept of chromophore and auxochrome. UNIT-II Infra red spectroscopy 8h Different Regions in Infrared radiations. Modes of vibrations in diatomic and polyatomic molecules. Characteristic absorption bands of various functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each. Proton magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone. PHYSICAL CHEMISTRY Mon Colligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in bioling point and depression of molecular weight of non-volatile solute. Theory of dutue solutions. Determ		OBJECTIVES:	
 Under stands the application of colligative properties in the determination of molecular weight Understands the applications of spectrophotometry and spectroscopic interpretations SPECTROSCOPY 30 hrs (2h / w) MT-1 6h General features of absorption - Beer-Lambert's law and its limitations, transmittance, Absorbance, and molar absorptivity. Single and double beam spectrophotometers. Application of Beer-Lambert law for quantitative analysis of 1. Chromium in K₂Cr₂O₇ 2. Manganese in Manganous sulphate Electronic spectroscopy: 8h Interaction of electromagnetic radiation with molecules and types of molecular spectra. Energy levels of molecular obitals (σ, π, n). Selection rules for electronic spectra. Types of electronic transitions in molecules effect of conjugation. Concept of chromophore and auxochrome. UNIT-II Infra red spectroscopy 8h Different Regions in Infrared radiations. Modes of vibrations in diatomic and polyatomic molecules. Characteristic absorption bands of various functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each. Proton magnetic resonance spectroscopy (¹H-NMR) 8h Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, actaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and accetophenoeu. PHSICAL CHEMISTEY 10h Colligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Experimental methods of determination. Osmosis, spontion pressure, experimental determination. Detory of dilute solutions. Determination of mole		1. Understands heterogenious equilibria and the applicati	on of phase rule
molecular weight 4. Understands the applications of spectrophotometry and spectroscopic interpretations SPECTROSCOPY 30 hrs (2h / w) UNT-I 6 General features of absorption - Beer-Lambert's law and its limitations, transmittance, Absorbance, and molar absorptivity. Single and double beam spectrophotometers. Application of Beer-Lambert law for quantitative analysis of 1. Chromium in K ₂ Cr ₂ O ₇ 2. Manganese in Manganous sulphate Electronic spectroscopy 8 Interaction of electromagnetic radiation with molecules and types of molecular spectra. Energy levels of molecular orbitals (σ, π, n). Selection rules for electronic spectra. Types of electronic transitions in molecules effect of conjugation. Concept of chromophore and auxochrome. UNIT-II Infra red spectroscopy 8 Different Regions in Infrared radiations. Modes of vibrations in diatomic and polyatomic molecules. Characteristic absorption bands of various functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each. Proton magnetic resonance, equivalent and nonequivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenou. ENTIFIE Dilute solitoms of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenous. ENTIFIE Dilute solitoms of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenous. ENTIFIE Dilute solitoms of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenous. ENTIFIE Dilute solitoms of NMR with suitable examples - thyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenous. ENTIFIE		2. Gains knowledge of principles of electrolysis and galv	anic cells
interpretations SPECTROSCOPY 30 hrs (2h / w) UNT-I 6 General features of absorption - Beer-Lambert's law and its limitations, transmittance, Absorbance, and molar absorptivity. Single and double beam spectrophotometers. Application of Beer-Lambert law for quantitative analysis of 1. Chromium in K ₂ Cr ₂ O ₇ 2. Manganese in Manganous sulphate Electronic spectroscopy 8 Interaction of electromagnetic radiation with molecules and types of molecular spectra. Energy levels of molecular orbitals (σ, π, n). Selection rules for electronic spectra. Types of electronic transitions in molecules effect of conjugation. Concept of chromophore and auxochrome. UNIT-II Infra red spectroscopy 8 Different Regions in Infrared radiations. Modes of vibrations in diatomic and polyatomic molecules. Characteristic absorption bands of various functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each. Proton magnetic resonance spectroscopy (¹ H-NME) 8h Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone. PHYEICENCENCENCENCENCENCENCENCENCENCENCENCENC			n the determination of
UNT-16hGeneral features of absorption - Beer-Lambert's law and its limitations, transmittance, Absorbance, and molar absorptivity. Single and double beam spectrophotometers. Application of Beer-Lambert law for quantitative analysis of 1. Chromium in K ₂ Cr ₂ O ₇ 2. Manganese in Manganous sulptateElectronic spectroscopy:8hInteraction of electromagnetic radiation with molecules and types of molecular spectra. Energy levels of molecular orbitals (σ, π, n). Selection rules for electronic spectra. Types of electronic transitions in molecules effect of conjugation. Concept of chromophore and auxochrome.UNT-IMfInfra red spectroscopy8hDifferent Regions in Infrared radiations. Modes of vibrations in diatomic and polyatomic molecules. Characteristic absorption bands of various functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each.Proton magnetic resonance spectroscopy (H-NMR)8hPrinciples of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone.PHYSICA CHEMISTEX Different second of relation of polynation of ono-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, somotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Coll			nd spectroscopic
General features of absorption - Beer-Lambert's law and its limitations, transmittance, Absorbance, and molar absorptivity. Single and double beam spectrophotometers. Application of Beer-Lambert law for quantitative analysis of 1. Chromium in $K_2Cr_2O_7$ 2. Manganese in Manganous sulphateElectronic spectroscopy:8hInteraction of electromagnetic radiation with molecules and types of molecular spectra. Energy levels of molecular orbitals (σ, π, n). Selection rules for electronic spectra. Types of electronic transitions in molecules effect of conjugation. Concept of chromophore and auxochrome.UNIT-IIInfra red spectroscopy8hDifferent Regions in Infrared radiations. Modes of vibrations in diatomic and polyatomic molecules. Characteristic absorption bands of various functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each.8hProton magnetic resonance spectroscopy (¹ H-NMR)8hPrinciples of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone.PHYSICAL CHEMISTRY30 hrs (2h / w)UNIT-IIIDilute solutions10hColligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determin	SPEC	CTROSCOPY	30 hrs (2h / w)
Absorbance, and molar absorptivity. Single and double beam spectrophotometers. Application of Beer-Lambert law for quantitative analysis of 1. Chromium in $K_2Cr_2O_7$ 2. Manganese in Manganous sulphate Electronic spectroscopy: B Interaction of electromagnetic radiation with molecules and types of molecular spectra. Energy levels of molecular orbitals (σ , π , n). Selection rules for electronic spectra. Types of electronic transitions in molecules effect of conjugation. Concept of chromophore and auxochrome. UNIT-II Infra red spectroscopy B Different Regions in Infrared radiations. Modes of vibrations in diatomic and polyatomic molecules. Characteristic absorption bands of various functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each. Proton magnetic resonance spectroscopy (¹ H-NMR) N Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone. PHYSICAL CHEMISTRY Dibute solutions 10h Colligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of reezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative		UNIT-I	6h
Application of Beer-Lambert law for quantitative analysis of 1. Chromium in $K_2Cr_2O_7$ 2. Manganese in Manganous sulphateElectronic spectroscopy:ShInteraction of electromagnetic radiation with molecules and types of molecular spectra. Energy levels of molecular orbitals (σ, π, n). Selection rules for electronic spectra. Types of electronic transitions in molecules effect of conjugation. Concept of chromophore and auxochrome.UNIT-IIInfra red spectroscopyShDifferent Regions in Infrared radiations. Modes of vibrations in diatomic and polyatomic molecules. Characteristic absorption bands of various functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each.ShProton magnetic resonance spectroscopy (¹ H-NMR)ShPrinciples of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone.PHYSICAL CHEMISTRY30 hrs (2h / w)UNT-III:Dilut solutionsDilut solutions10hColligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Co		General features of absorption - Beer-Lambert's law and it	s limitations, transmittance,
Manganese in Manganous sulphateShElectronic spectroscopy:ShInteraction of electromagnetic radiation with molecules and types of molecular spectra. Energy levels of molecular orbitals (σ, π, n). Selection rules for electronic spectra. Types of electronic transitions in molecules effect of conjugation. Concept of chromophore and auxochrome.UNIT-IIInfra red spectroscopyShDifferent Regions in Infrared radiations. Modes of vibrations in diatomic and polyatomic molecules. Characteristic absorption bands of various functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each.ShProton magnetic resonance spectroscopy (¹ H-NMR)ShPrinciples of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone.UNIT-II: Dilute solutions10hColligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative			
Electronic spectroscopy:8hInteraction of electromagnetic radiation with molecules and types of molecular spectra. Energy levels of molecular orbitals (σ, π, n). Selection rules for electronic spectra. Types of electronic transitions in molecules effect of conjugation. Concept of chromophore and auxochrome.UNIT-IIInfra red spectroscopy8hDifferent Regions in Infrared radiations. Modes of vibrations in diatomic and polyatomic molecules. Characteristic absorption bands of various functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each.Proton magnetic resonance spectroscopy (¹ H-NMR)8hPrinciples of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1, 1, 2-tribromo ethane, ethyl acetate, toluene and acetophenone.PHYSICAL CHEMISTRY Dilute solutions30 hrs (2h / w)UNIT-III: Dilute solutions10hColligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative			1. Chromium in $K_2Cr_2O_7$ 2.
Interaction of electromagnetic radiation with molecules and types of molecular spectra. Energy levels of molecular orbitals (σ , π , n). Selection rules for electronic spectra. Types of electronic transitions in molecules effect of conjugation. Concept of chromophore and auxochrome. UNIT-II Infra red spectroscopy 8h Different Regions in Infrared radiations. Modes of vibrations in diatomic and polyatomic molecules. Characteristic absorption bands of various functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each. Proton magnetic resonance spectroscopy (¹ H-NMR) 8h Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone. PHYSICAL CHEMISTRY 30 hrs (2h / w) UNIT-III: Dilute solutions 10h Colligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative			OL
Energy levels of molecular orbitals (σ, π, n). Selection rules for electronic spectra. Types of electronic transitions in molecules effect of conjugation. Concept of chromophore and auxochrome.UNIT-IIInfra red spectroscopy8hDifferent Regions in Infrared radiations. Modes of vibrations in diatomic and polyatomic molecules. Characteristic absorption bands of various functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each.8hProton magnetic resonance spectroscopy (¹ H-NMR)8hPrinciples of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone.PHYSICAL CHEMISTRY30 hrs (2h / w)UNIT-III:Dilute solutionsDilute solutions10hColligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative			
electronic transitions in molecules effect of conjugation. Concept of chromophore and auxochrome. UNIT-II Infra red spectroscopy 8h Different Regions in Infrared radiations. Modes of vibrations in diatomic and polyatomic molecules. Characteristic absorption bands of various functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each. Proton magnetic resonance spectroscopy (¹ H-NMR) 8h Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone. PHYSICAL CHEMISTRY 30 hrs (2h / w) UNIT-III: Dilute solutions 10h Colligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative		-	•• •
Infra red spectroscopy 8h Different Regions in Infrared radiations. Modes of vibrations in diatomic and polyatomic molecules. Characteristic absorption bands of various functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each. Proton magnetic resonance spectroscopy (¹ H-NMR) 8h Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone. PHYSICAL CHEMISTRY 30 hrs (2h / w) UNIT-III: Dilute solutions Dilute properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative		electronic transitions in molecules effect of conjugation. Co	
Different Regions in Infrared radiations. Modes of vibrations in diatomic and polyatomic molecules. Characteristic absorption bands of various functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each. Proton magnetic resonance spectroscopy (¹ H-NMR) 8h Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone. PHYSICAL CHEMISTRY 30 hrs (2h / w) UNIT-III : Dilute solutions Dilute solutions 10h Colligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative			
 polyatomic molecules. Characteristic absorption bands of various functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each. Proton magnetic resonance spectroscopy (¹H-NMR) 8h Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone. PHYSICAL CHEMISTRY 30 hrs (2h / w) UNIT-III : Dilute solutions 10h Colligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative 		Infra red spectroscopy	8h
 groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls, and amines with one example to each. Proton magnetic resonance spectroscopy (¹H-NMR) 8h Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone. PHYSICAL CHEMISTRY 30 hrs (2h / w) UNIT-III: Dilute solutions 10h Colligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative 		-	
amines with one example to each. Proton magnetic resonance spectroscopy (¹ H-NMR) Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone. PHYSICAL CHEMISTRY 30 hrs (2h / w) UNIT-III: Dilute solutions 10h Colligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative			
Proton magnetic resonance spectroscopy (¹ H-NMR)8hPrinciples of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone.PHYSICAL CHEMISTRY30 hrs (2h / w)UNIT-III :10hDilute solutions10hColligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative			Alcohols carboliyis, and
 Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone. PHYSICAL CHEMISTRY 30 hrs (2h / w) UNIT-III : Dilute solutions 10h Colligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative 		-	8h
of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone. PHYSICAL CHEMISTRY 30 hrs (2h / w) UNIT-III : Dilute solutions 10h Colligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative			
acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone. PHYSICAL CHEMISTRY 30 hrs (2h / w) UNIT-III : 10h Colligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative			
PHYSICAL CHEMISTRY 30 hrs (2h / w) UNIT-III : Dilute solutions 10h Colligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative		constants. Applications of NMR with suitable examples	- ethyl bromide, ethanol,
UNIT-III : Dilute solutions 10h Colligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative		acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and	acetophenone.
Dilute solutions10hColligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative			30 hrs (2h / w)
Colligative properties. Raoult's law, relative lowering of vapour pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative			101
molecular weight of non-volatile solute. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative			
freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative			-
point and depression in freezing point. Experimental methods of determination. Osmosis, osmotic pressure, experimental determination. Theory of dilute solutions. Determination of molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative		-	
molecular weight of non-volatile solute from osmotic pressure. Abnormal Colligative			
properties- Van't Hott factor.		-	ssure. Abnormal Colligative
		properties- Van't Hoff factor.	

	*********************	***
*		米
******************	UNIT-IV	*********
*	Electrochemistry-I 10h	*
*	Specific conductance, equivalent conductance. Variation of equivalent conductance with	*
*	dilution. Migration of ions, Kohlrausch's law. Arrhenius theory of electrolyte dissociation and its limitations. Ostwald's dilution law. Debye-Huckel-Onsagar's equation for strong	*
	electrolytes (elementary treatment only). Definition of transport number, determination by	ネ 上
	Hittorfs method. Application of conductivity measurements- conductometric titrations.	
	UNIT-V	デ
ボ	1. Electrochemistry-II 4h	苶
*	Single electrode potential, sign convention, Reversible and irreversible cells Nernst	⋇
✷	Equation- Reference electrode, Standard Hydrogen electrode, calomel electrode,	*
*	Indicator electrode, metal – metal ion electrode, Inert electrode, Determination of EMF of cell, Applications of EMF measurements - Potentiometric titrations.	*
*		米
*	2.Phase rule 6h	*
*	Concept of phase, components, degrees of freedom. Thermodynamic Derivation of Gibbs phase rule. Phase equilibrium of one component system - water system.	*
	Phase equilibrium of two- component system, solid-liquid equilibrium. Simple	不
	eutectic diagram of Pb-Ag system, simple eutectic diagram, desilverisation of lead.,	デ
715	NaCl-Water system, Freezing mixtures.	ボ
茶	List of Reference Books	米
*	1. Spectroscopy by William Kemp	*
*	2. Spectroscopy by Pavia	*******
*	3. Organic Spectroscopy by J. R. Dyer	*
*	4. Modern Electrochemistry by J.O. M. Bockris and A.K.N.Reddy	米
*	5. Advanced Physical Chemistry by Atkins	
*	6. Introduction to Electrochemistry by S. Glasstone	*
× ×	7. Elementary organic spectroscopy by Y.R. Sharma	
	8. Spectroscopy by P.S.Kalsi	
7/ W		デ
ボ		ボ
*		※
*		米
*		米
*		米
*		米
*		*
*		*
		ネ ン
************		************
ボ		彩
	A	
***	********************	***

	***	****	<***	********			
*******************		LABO	RATORY COU	RSE – IV	**************		
~ ※	Practical Paper - IV Physical Chemistry and IR Spectral Analysis						
*	Fraci		he end of semes				
*				30 hrs (2 h / W)			
*							
*	Physical	Chemistry		25M			
*	1 0	Critical Solution Tem	paratura Dhana	1 Water system			
*			-	nperature (Phenol-Water system)			
※			ntration of HCl co	onducts metrically using standard NaOH			
火		olution. Determination of conce	ntration of acetic	acid conducts metrically using standard			
火		NaOH Solution.					
~ ※	IR Spectra	al Analysis		10 M			
※							
火	-	-	lowing functional	l groups with examples			
火		xyl groups					
小 火	c) Amino	nyl groups					
不 <u>火</u>		atic groups			ド		
	d) / Hollik		VALUATION	FOR IV SEMESTER	ド		
不 火				ATORY COURSE	ド		
示 火		PHYSICAL CHE	MISRY AND I	R SPECTRAL ANALYSIS	ドメ		
	Max M	arks: 50		Time: 3 hrs.			
71 X	For Reco		8	Time , 5 ms.	デ		
デ	For Viva	-voce - 5 Marks			ディ		
デ	For Pract				が		
デ	Splitting i)	of Practical Marks f Procedure in first	•	mistry: : 5 Marks	デ		
ボ	ii)	Tabulation of the		: 5 Marks	ボ		
ボ	iii)	Calculation	-	: 5 Marks	ネン		
ポ	iv)	For result	Emer (100/	: 10 Marks	ネン		
彩			Error < 10% Error 10-15 %	: 10 Marks : 8 Marks	米		
彩			Error > 20%	: 5 Marks (Minimum Marks)	米		
米	Splitting of Practical Marks for IR spectral analysis:						
米		-		present in the IR spectrum of an	米		
米	organic c	compound : 10	WIARKS		*		
***********					***********		
*					米		
⋇					*		
					•		
***	****	*****	****	********	****		

Final year 2017-	18
SEMESTER-V	
Paper - III (INORGANIC, PHYSICAL	
45 hrs (3 h / w)	
NORGANIC CHEMISERY	
JNIT-I	
Coordination Chemistry:	8h
UPAC nomenclature - bonding theories - R Sidgwick's concept of coordination - Valence	
oordination numbers 4-tetrahedral and square	
imitations, crystal filed theory - splitting of d-orb	-
quare-planar complexes - low spin and high spin	
rystal-field splitting energy, merits and demerits	
n coordination compounds - structural ison	
tereochemistry of complexes with 4 and 6 coordin	
JNIT-II	
. Spectral and magnetic properties of metal co	-
Sypes of magnetic behavior, spin-only formula, c	-
xperimental determination of magnetic susceptible	
2. Stability of metal complexes:	3h
Thermodynamic stability and kinetic stability,	• •
netal complexes, chelate effect, determination of	composition of complex by Job's
nethod and mole ratio method.	
ORGANIC CHEMISTR	Y
JNIT- III Nitro hydrocarbons:	3h
Nomenclature and classification-nitro hydrocart	
itroalkanes leading to aci and keto form, Prepar	,
alogenation, reaction with HONO (Nitrous a	•
eaction leading to Micheal addition and reduction	
JNIT – IV	
1. Nitrogen compounds :	12h
Amines (Aliphatic and Aromatic): Nomenclatur	
Amines and Quarternary ammonium compounds.	1
. Ammonolysis of alkyl halides 2. Gabriel syn	
eaction (mechanism).Reduction of Amides a	
properties and basic character - Comparative bas	
mine, dimethyl amine, trimethyl amine and anili niline, N-methylaniline and N,N-dimethyl anili	
nedium), steric effects and substituent effects.	ne (in aqueous and non-aqueous
Chemical properties: a) Alkylation b) Acylati	on c) Carbylamine reaction d)
Hinsberg separation e) Reaction with Nitrous a	
romatic amines). Electrophillic substitution of Ar	· •
Vitration. Oxidation of aryl and Tertiary amines, I	

<u>米</u> 火		*
*****************	2. Heterocyclic Compounds Introduction and definition: Simple five membered ring compounds with one hetero atom Ex. Furan. Thiophene and pyrrole - Aromatic character – Preparation from 1,4,-dicarbonyl compounds, Paul-Knorr synthesis.	***************
* * *	Properties : Acidic character of pyrrole - electrophillic substitution at 2 or 5 position, Halogenation, Nitration and Sulphonation under mild conditions - Diels Alder reaction in furan.	* * *
*	Pyridine - Structure - Basicity - Aromaticity - Comparison with pyrrole - one	*
*	method of preparation and properties - Reactivity towards Nucleophilic substitution	*
*	reaction.	*
*	PHYSICAL CHEMISTRY	米
米	UNIT- V	米
*	Thermodynamics 15h	米
*	The first law of thermodynamics-statement, definition of internal energy and enthalpy. Heat capacities and their relationship. Joule-Thomson effect- coefficient.	*
*	Calculation of w, for the expansion of perfect gas under isothermal and adiabatic	米
*	conditions for reversible processes. State function. Temperature dependence of	*
*	enthalpy of formation-Kirchoff s equation. Second law of thermodynamics.	*
*	Different Statements of the law. Carnot cycle and its efficiency. Carnot theorem.	*
*	Concept of entropy, entropy as a state function, entropy changes in reversible and irreversible processes. Entropy changes in spontaneous and equilibrium processes.	*
*		*
米	List of Reference Books 1. Concise coordination chemistry by Gopalan and Ramalingam	*
*	2. Coordination Chemistry by Basalo and Johnson	*
*	3. Organic Chemistry by G.Mare loudan, Purdue Univ	*
*	 Advanced Physical Chemistry by Text book of physical chemistry by S Glasstone 	*
*	6.Concise Inorganic Chemistry by J.D.Lee	*
*	7. Advanced Inorganic Chemistry Vol-I by Satyaprakash, Tuli, Basu and Madan	*
*	 A Text Book of Organic Chemistry by Bahl and Arun bahl A Text Book of Organic chemistry by I L Finar Vol I 	*
*	10. Advanced physical chemistry by Gurudeep Raj	· · · · ·
*	To A dvalleed physical chemistry by Guradeep Raj	*
*		*
*		*
*		*
*		*
*		*
***********		************
*		
*		*
•	****	•

DEPARTMENT BOARD OF STUDIES FIFTH SEMES PAPI	OLLEGE (A), KAKINADA OF CHEMISTRY 5 2017-18 APRIL- 2016 FER SYLLABUS ER-IV O ELECTIVE - 1
1. Molecular spectroscopy;	10 h
<u>UNIT-I</u>	
Raman spectroscopy: Concept of polarizavility	-
pure vibrational Raman spectra of diatomic mole	
Mass Spectrometry: Basic principles – Molecu	1 0
daughter ions. Theory – formation of parent ions	
Identification of parent ion, (M+1), (M+2), base	
Determination of molecular formula – Mass spe	ctra of ethylbenzene, acetophenone,
n-butyl amine and 1- proponal.	
b) Spectral interpretation: 2h	
Interpretation of IR, UV-Visible, ¹ H-NMR of th	e following compounds 1. Phenyl acetylene
2. Acetophenone 3.Cinnamic Acid 4. para	a-nitro aniline.
<u>UNIT-II</u>	
MACROMOLECULES: 10 hours	
Classification of polymers, definition and n	nechanisms of polymerization methods- chair
polymerization, step polymerization, coordination	on polymerization – tacticity.
Co-Polymerization. Molecular weight of po	olymers-number average and weight average
molecular weight, degree of polymerization, de	termination of molecular weight of polymers by
viscometry and Osmometry. Preparation and inc	lustrial application of polyethylene, PVC, Teflon
polyacrylonitrile, terelene and Nylon66. Introdu	ction to biodegradability.with examples.
Unit III Green Chemistry	8 hours
Introduction: Definition of green Chemistry, n chemistry	eed of green chemistry, basic principles of greer
Green synthesis: Evaluation of the type of	the reaction i) Rearrangements (100% atom
economic), ii) Addition reaction (100% atom ec	onomic), Pericyclic reactions (no by-product).
Selection of solvent:i) Aqueous phase reactions	ii) Reactions in ionic liquids iii) Solid supported
synthesis iv) Solvent free reactions (solid phase	e reactions)

**	***		****
米		Microwave and Ultrasound assisted green synthesis:	*
米	1.	. Aldol condensation	*
米	2.	2. Cannizzaro reaction	米
*	3.	B. Diels-Alder reactions	米
彩	4.	• Strecker synthesis	米
彩	5.	5. Willaimson synthesis	米
ボ	6.	5. Dieckmann condensation	ジャン
ボ			ボ
ディ			ボ
ディ			ボ
717 			がメ
717 			ド
77 			ド
ネ ※			
~ ※			
*			不 ※
*			
****************			****************
*			· · · · · · · · · · · · · · · · · · · ·
*			*
*			
*			* *
*			*
* *			*
*			*
* *			*** ***
米			**
米			*
米			**
米			*
米			* * *
米			*
米			
**	***	**********************	****

**	***	****	米
米		DEPARTMENT OF CHEMISTRY	尜
米		BOARD OF STUDIES 2017-18 APRIL- 2016	米
* *		FIFTH SEMESTER SYLLABUS PAPER-IV	* * *
715		Model paper	
不	Answe	er any four choosing at least one from each section A,B,C. $4x10=40$ Marks	が火
~ ※		Section-A;	****
米	1.	Explain the different types of molecular vibrations and interpretation of IR spectrum	米
**	Ι	n respect of i) Functional group region ii) finger print region	**
****************	2.	What are equivalent and non equivalent protons? Explain Chemical shift . How is it expressed?	****
*	3.	Interpret the spectrum of the following as per UV.IR and NMR spectroscopy.	米
*		i) Cinnamic acid ii) phenyl acetylene	
*			米
*		Section - B;	****
∦	4.	Define the term polymerization. Write the mechanism of radical polymerization.	米
✵	5.	How is molecular weight determined by Viscometry method?	米
米 ※	6.		***
	_	Section - C;	デ
米 火	7.	Enumerate the principles of green chemistry.	米
ボ	8.	How is a reaction evaluated in green chemistry? Explain with an example? Give	米
デ		examples of 100% atom economy reactions.	ディ
ボ	9.	Microwave and Ultrasound assisted green synthesis:	ボ
ボ	i)	Aldol condensation	ボ
苶	ii)	Cannizzaro reaction	ボ
苶		Section: D	ボ
彩	Answe	er any five of the following questions. $4 \ge 5 = 20$ Marks	彩
彩	10	. How does Conjugation affect the λ_{max} of the compounds?	彩
米	11	. What is force constant? How is it related to the bond energies?	米
米	12	. Explain spin-spin coupling.	米
**********	13	. What is tactility? Write different types of tacticity.	*********
*			米
•			•
**	***	************************	米

15. Write the names and structures of monomers in (i) Teflon ((ii) Terylene
16. Write a note on Phase Transfer Catalysis.	
17. What is the need for Green Chemistry?	
Section-E	
Answer all the following questions.	5 x 2 = 10 Marks
18. What are stokes and anti-stoke lines in Raman Spectrum?	
19. Define the terms chromophore and Auxochrome.	
20. Define degree of polymerization.	
21. What are Ziegler-Natta catalysts?	
22. Write a note on biocatalysts.	

DEPARTMENT OF CH	EMISTRY
BOARD OF STUDIES 2017-1	
FIFTH SEMESTER SY	LLABUS
PAPER-IV SKILL BASED ELEC	ΓΙVE - 2
ENVIRONMENTAL CH	
30 hrs (2 h / w) UNIT-I	
Introduction	9h
Concept of Environmental chemistry-Scope and impo Nomenclature of environmental chemistry – Segments Renewable Resources – Solar and biomass energy a power and atomic energy – Reactions of atmospheric ox UNIT-II	of environment - Natural resources – nd Nonrenewable resources – Thermal
Air Pollution	9h
Definition – Sources of air pollution – Classification of a smog – Green house effect – Formation and deplet Controlling methods of air pollution. UNIT-III	-
Water pollution & Chemical Toxicology	
	12h
Unique physical and chemical properties of water – water quality – Dissolved oxygen – BOD, COD, Sealkalinity – Hardness of water – Methods to convert Methods to convert permanent hard water into soft water into soft water into soft water – Industrial waste water environment – effects of toxic chemicals – cyanide and in List of Reference books	uspended solids, total dissolved solids, temporary hard water into soft water – vater – eutrophication and its effects – er treatment. Toxic chemicals in the
1. Fundamentals of ecology by M.C.Dash	
2. A Text book of Environmental chemistry by W. Moon	e and F.A. Moore
3. Environmental Chemistry by Samir k. Banerji	

**	**************************************	******
*	P.R.GOVERNMENT COLLEGE (A), KAKI	XADA XA
米	DEPARTMENT OF CHEMISTRY	
米	BOARD OF STUDIES 2017-18 APRIL- 2	016 **
ボ	FIFTH SEMESTER SYLLABUS PAPER-IV	ネッ
が	Elective 2	ボ
717 242	<u>Model paper</u>	ドレン
水 ※	Answer any four choosing at least one from each section A,B,C.	不 4x10-40 Marks
小 ※	This wer any roar encosing at least one from each section Ti,D,C.	*****
*****************	SECTIONA;	NADA $* \\ * \\ * \\ * \\ * \\ * \\ * \\ * \\ * \\ * \\$
*	THREE QUESTIONS FROM UNIT I	*
*	SECTION B;	*
*	THREE QUESTIONS UNIT II	*
*	SECTION C;	*
米	THREE QUESTIONS FROM UNIT III	*
米	SECTION: D	$4x5 = 20 \qquad \qquad \bigstar$
米	. TWO QUESTIONS FROM UNIT I	*
米	TWO QUESTIONS FROM UNIT II	*
米	FOUR QUESTIONS FROM UNIT III	*
米		*
	SECTION-E	
米	ONE QUESTION FROM UNIT I	*
*	ONE QUESTION FROM UNIT II	*
*	THREE QUESTIONS FROM UNIT III	*
米		*
*		*
*		*
米		*
米		*
米		*
米		*
米		*
*********		**********
•	ne n	-
芥芥	*****	*****

	Practical Paper – V Organic Ch (at the end of semester V)	
Organic Qualitativ	· · · · ·	50M
0	•	c qualitative procedure for functional grou
	iding the determination of melti	ing point and boiling point with suitabl
derivatives.	Aldahudaa Katanaa Carbanulia	acida Aromatia Drimary Aminas Amida
and Simple sugars.	Aldenydes, Ketones, Carboxync	acids, Aromatic Primary Amines, Amide
and Shiple sugars.		
	LABORATORY COU	
	Practical Paper – VI Physical (at the end of semester	•
	(at the end of semester	50 ms (2 m vv)
1. Determination of	f rate constant for acid catalyzed es	ster hydrolysis.
	f molecular status and partition c	coefficient of benzoicacid in Benzene and
water.		
3. Determination of	f Surface tension of liquid	
4. Determination of	f Viscosity of liquid.	
5. Potentiometry- D	Determination of Fe (II) with Potas	ssium dichromate

米 尜 ************************* Time: 3 Hrs. **OBJECTIVES:** feasibility of a reaction. **ORGANIC CHEMISTRY**

FINAL YEAR-2017-18 SEMESTER – VI CHEMISTRY III MODEL PAPER 2017-18 (INORGANIC, ORGANIC & PHYSICAL CHEMISTRY)

Max. Marks: 70

PAPER III

- 1. Gains knowledge Labile and Inert complexes
- 2. Knowledge of Biological significance of inorganic elements
- 3. Structure of Carbohydrates
- 4. Synthesis of amino acids.

INORGANIC CHEMISTRY

Reactivity of metal complexes: Labile and inert complexes, Mechanism of ligand substitution reactions in octahedral complexes- SN^1 and SN^2 reactions, ligand substitution reactions in square planar complexes- Trans effect and applications of Trans effect.

Stability of metal complexes: Thermodynamic stability and kinetic stability- factors affecting the stability of complexes- chelate effect- determination of the composition of the complex by Job's method and mole-ratio method.

Hard and Soft acids and bases: Classification, Pearson's concept of hardness and softness-HSAB Principle and applications of HSAB Principle-stability of complexes, predicting the

Bioinorganic Chemistry: Essential elements- biological significance of Na, K, Mg, Ca, Fe, Co, Ni, Cu, Zn and Chloride (Cl⁻).metalloporphyrins -hemoglobin, structure and function, chlorophyll, structure and role in photosynthesis.

Carbohydrates: Monosaccharide's: All discussion to be confined to (+) glucose as an example of aldo hexoses and (-) fructose as example of ketohexoses. Chemical properties and structural elucidation: Evidences for straight chain pentahydroxy aldehyde structure (Acetylation, reduction to n-hexane, cyanohydrin formation, reduction of Tollen's and Fehling's reagents and oxidation to gluconic and saccharic acid). Number of optically active isomers possible for the structure, configuration of glucose based on D-glyceraldehydes as primary standard (no proof for configuration is required). Evidence for cyclic structure of glucose (some negative aldehydes tests and mutarotation). Cyclic structure of glucose. Decomposition of cyclic structure (Pyranose oxidation reactions).Different ways of writing pyranose structure (Haworth formula and chair conformationa formula). Structure of fructose: Evidence of 2 - ketohexose structure (formation of penta acetate, formation of cyanohydrin its hydrolysis and reduction by HI to give 2-Carboxyn-hexane). Same osazone formation from glucose and fructose, Hydrogen bonding in osazones, cyclic structure for fructose (Furanose structure and Haworth formula).

Interconversion of Monosaccharide: Aldopentose to aldo hexose – eg: Arabinose to D-Glucose, D-Mannose (Kiliani - Fischer method). Epimers, Epimerisation – Lobry de bruyn van Ekenstein rearrangement. Aldohexose to Aldopentose eg: Dglucose to D-arabinose by Ruff'f degradation. Aldohexose (+) (glucose) to ketohexose (-) (Fructose) and Ketohexose (fructose) to aldohexose (Glucose).

Amino acids and proteins:

尜

米

Introduction: Definition of Amino acids, classification of Amino acids into alpha, beta, and gamma amino acids. Natural and essential amino acids – definition and examples, classification of alpha amino acids into acidic, basic and neutral amino acids with examples. Methods of synthesis: General methods of synthesis of alpha amino acids (specific examples – Glycine, Alanine, valine and leucene) by following methods: a) from halogenated carboxylic acid b)

Malonic ester synthesis c) strecker's synthesis. Physical properties: Optical activity of naturally occurring amino acids: Lconfiguration, irrespective of sign rotation, Zwitterion structure - salt like character- solubility, melting points, amphoteric character, definition of isoelectric point. Chemical properties: General reactions due to amino and carboxyl groups – lactams from gamma and delta amino acids by heating peptide bond (amide linkage). Structure and nomenclature of peptides and proteins.

PHYSICAL CHEMISTRY:

1. Chemical kinetics: Rate of reaction, factors influencing the rate of a reaction concentration, temperature, pressure, solvent, light, catalyst. Experimental methods to determine the rate of reaction. Definition of order and molecularity. Derivation of rate constants for first, second, third and zero order reactions and examples. Derivation for time half change. Methods to determine the order of reactions. Kinetics of complex reactions (first order only): opposing reactions, parallel reactions, consecutive reactions and chain reactions. Effect of temperature on rate of reaction, Arrhenius equation, concept of activation energy. Theories of reaction rates- collision theory-derivation of rate constant for bimolecular reaction. The transition state theory (elementary treatment).

**** photochemistry-Grothus-Draper's law and Stark-Einstein's law of photochemical equivalence. Quantum yield. Ferrioxalate actinometry.Photochemical hydrogen- chlorine, hydrogen-bromine reaction. Jablonski diagram depicting various processes occurring in the excited state, qualitative description of fluorescence, phosphorescence, non-radiative processes (internal conversion, intersystem crossing). Photosensitized reactions- energy transfer processes (simple example)

	III YEAR B.Sc (Examination at the end of VI Semester) Model Paper PAPER-III (INORGANIC, ORGANIC AND PHYSICAL CHEMISTRY)
]	FATER-III (INORGANIC, ORGANIC AND FITTSICAL CHEWISTRT) Fime: 3 Hrs. Max. Marks: 70
Ar	nswer any <u>FOUR</u> questions choosing at least <u>ONE</u> question from each section.
	SECTION-I 4 X 10 = 40 Marks
1.	Explain the mechanism of the ligand substitution reactions $(SN^1 \text{ and } SN^2)$ in octahedral
	complexes.
2.	Explain the determination of composition of complex by Job's method.
3.	(i) Explain the biological significance of Mg and Fe.
	(ii) Explain the structure of chlorophyll and its role in photosynthesis.
	SECTION-II
4.	Explain (i) Killiani-Fischer Synthesis (ii) Ruff degradation
5.	What are amino acids? Write their classification. Give any two methods of preparation o
	amino acids.
6.	Write the objections of open chain structure of glucose and explain the ring structure of
	glucose.
	SECTION-III
7.	(i) Derive an expression for the rate constant of a first order reaction.
	(ii) In a first order reaction, 10% of the reactants are consumed in 30 minutes. Calculate
	the time required for 90% completion of the reaction.
8.	Explain any three methods of determination of order of a reaction.
9.	What is meant by "Quantum yield of a chemical reaction". The quantum yield for the
	reaction $H_2 + Cl_2 \rightarrow 2 \text{ HCl}$ is very high. Explain.

* ¥	SECTION-IV	米米
******************	Answer any <u>FIVE</u> of the following questions. $5 \times 4 = 20$ Marks	*************
*	10. Explain any two factors affecting the stability of complexes.	米
*	11. Write HSAB principle and its applications.	米义
ネ ※	12. Write the structure and biological functions of hemoglobin.	不米
*	13. Write the equations of the osazone formation from glucose and fructose.	米
*	14. What is Zwitter ion? Write the salt like properties of amino acids.	米
※		が ※
*	15. Write a note on the structure of proteins.	米
*	16. Write a note on transition state theory.	⋇
*	17. Write a note on (i) Fluorescence and (ii) Phosphorescence	米
※	18. Explain any two factors influencing the rate of a reaction.	が
ネ ※	SECTION-V	不米
*	Answer <u>ALL</u> the following questions.	米
*	19. What are hard acids? Give examples.	米
※	20. What is meant by Chelate effect?	彩彩
∽ ※	21. What are epimers and anomers?	
*	22. Define isoelectric point.	米
*	23. State Grothus-Draper law.	米
※		※
*		不米
*		米
*		米
※ ※		米火
ネ ※		不必
*********		**********
•		•
***	**************************	**

	FINAL YEAR-2017-18
	VI semester syllabus IV Paper 2017-18
	ELECTIVE -1
Unit I	
	101
1. DRUGS	10h
	ug, disease (definition), Historical evolution, Sources – Plant, Animal
b. Terminology :	by and human gene therapy Pharmacy, Pharmacology, Pharmacophore, Pharmacodynamics,
	DME, Receptors – brief treatment) Metabolites and Anti metabolites.
,	emical name and Generic name
	ssification based on structures and therapeutic activity with one example
each.	curre of and another and another address with one example
	sis and therapeutic activity of the following drugs, L-Dopa, Chloroquin
•	mol, Sulphamethoxazole. ciproflaxicin., salbutamole
f. Drug Development	t: Pencillin, Separation and isolation, structures of different penicillin's.
g. HIV-AIDS: Immu	unity - CD-4 cells, CD-8 cells Retrovirus, replication in human body.
Investigation available	e, prevention of AIDS. Drugs available - examples with clinical uses: PIS:
Indinavir (Crixivan),	, Nelfinavir (Viracept), NNRTIS: Efavirenz (Susrtiva), Nevirapine
Viramune) NRTIs: A	bacavir (Ziagen), Lamivudine (Epivir, 3TC) Zidovudine (Retravir, AZT,
ZDV)	
2. Formulations:	2h
	of drugs into medicine. Additives and their role (brief account only)
2. Different types of f	formulations Physico Chemical Methods of Analysis
UNIT - II	
SEPARATION TEC	CHNIQUES 10h
1. Solvent extraction:	Principle and process, Batch extraction, continuous extraction and counter
current extraction. App	plication – Determination of Iron (III)
2. Chromatography:	Classification of chromatography methods, principles of differential
migration adsorption	phenomenon, Nature of adsorbents, solvent systems, Rf values, factors
affecting Rf values.	
	aphy: Principles, Rf values, experimental procedures, choice of paper and
5	velopments of chromatogram -ascending, descending and radial. Two
dimensional chromato	
-	natography (TLC): Advantages. Principles, factors affecting Rf values.
	ures. Adsorbents and solvents. Preparation of plates. Development of the
	tion of the spots. Applications.
•	
c) Column Chromatog	graphy: Principles, experimental procedures, Stationary and mobile Phases,
c) Column Chromatog Separation technique.	

Catalysis:	4h
Homogeneous and heterogeneous catalysis, comp	parision with examples. Kinetics of specifi
acid catalyzed reactions, inversion of cane sugar. I	Kinetics of specific base catalyzed reactions
base catalyzed conversion of acetone to diacetone	alcohol. Acid and base catalyzed reactions
hydrolysis of esters, mutarotation of glucose. Cataly	tic activity at surfaces. Mechanisms of
heterogeneous catalysis. Langmuir-Hinshelwood m	nechanism. Enzyme catalysis: Characteristic
and classification. Kinetics of enzyme catalyzed rea	ctions- Michelis Menton Law.
Materials science:	4h
Nanomaterials- synthetic techniques, bottom-up-	-sol-gel method, top-downelectrodepositio
method. Properties and applications of nano	-materials. Composites-definition, genera
characteristics, particle reinforce and fiber reinforce	

PAPER IV	
Elective –	
Analytical and Ph	
PAPER – <mark>VIII-A-1:</mark> POLYM	IER CHEMISTRY
30 hrs (3 h / w	v)
	101
UNIT-II Taskaisuus of Delumenization (Dulk gelumeniz	10h
Techniques of Polymerization : Bulk polymerization : Bulk polymerization.	
Molecular weights of polymers: Number ave Determination of molecular weight of polymers in methods.	
UNIT-III	6һ
Kinetics of Free radical polymerization, Glass T	ransition temperature(Tg) and Determination o
Tg:	
Free volume theory, WLF equation, factors affec	ting glass transition temperature (Tg).
UNIT-IV	9h
Polymer additives: Introduction to plastic additives – fillers, Plas Promoters, Anti aging additives , Flame Retardar agents ,Photo stabilizers , Nucleating agents.	
UNIT-V	5h
Polymers and their applications:	
r orymons and mon approactions.	
Preparation and industrial applications of Polyeth Polyacrylonitrile, Terelene, Nylon6.6 silicones.	nylene, Polyvinyl chloride, Teflon,
Preparation and industrial applications of Polyeth	nylene, Polyvinyl chloride, Teflon,
Preparation and industrial applications of Polyeth Polyacrylonitrile, Terelene , Nylon6.6 silicones.	
 Preparation and industrial applications of Polyeth Polyacrylonitrile, Terelene, Nylon6.6 silicones. Reference Books: Seymour, R.B. & Carraher, C.E. <i>Poly</i> Dekker, Inc. New York, 1981. Odian, G. <i>Principles of Polymerization</i>, 44 	wmer Chemistry: An Introduction, Marcel th Ed. Wiley, 2004.
 Preparation and industrial applications of Polyeth Polyacrylonitrile, Terelene, Nylon6.6 silicones. Reference Books: 1. Seymour, R.B. & Carraher, C.E. <i>Poly</i> Dekker, Inc. New York, 1981. 	wmer Chemistry: An Introduction, Marcel th Ed. Wiley, 2004.
 Preparation and industrial applications of Polyeth Polyacrylonitrile, Terelene, Nylon6.6 silicones. Reference Books: Seymour, R.B. & Carraher, C.E. <i>Poly</i> Dekker, Inc. New York, 1981. Odian, G. <i>Principles of Polymerization</i>, 44 	wmer Chemistry: An Introduction, Marcel th Ed. Wiley, 2004. ence, 2nd Ed. Wiley Interscience, 1971.

* * * * **

**	*****	****	***
米	LABORATORY COURSE	– VII	*
**************	Practical Paper – VII (at the end of semester VI)	30 hrs (2 h / W)	
*			************
⋇	1. Preparation of Aspirin		*
*	2. Preparation of Paracetamol		*
*	3. Preparation of Acetanilide		
不 火	4. Preparation of Barbutiric Acid		
デ	5. Preparation of Phenyl Azo β-naphthol		
デ			717
ボ	LABORATORY COURSE – V		ボ
ボ	Practical Paper – VII-(A) (at the end of semester VI) 30hr	s (2 h / W) 50M	ボ
米	1. Identification of aminoacids by paper chromatography.		米
*	2. Colorimetry- Determination of KMnO ₄ , K2Cr ₂ O ₇		米
米	3. Determination of Zn using EDTA		米
米	4. Determination of Mg using EDTA		*
米			*
米			米
米			*
· ※			*
*			*
*			*
※			*
※			~ 米
小 火			六 米
デ			デ
デ			*
ボ			*
米			*
米			*
米			⋇
米			*
******			*
米			*
∦			*
· ※			*
*			*
	*****	*****	